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Introduction

I Cycles in revealed preference data are often thought of as
fundamental units of choice-theoretic inconsistency.

I However, choice cycles are generally not independent of each
other.

I The particular collection of budgets we observe choice on has
strong implications for structure of potential inconsistency:
cyclic choices over certain alternatives often force cyclic
choices over others.



An Example

I Suppose X = {x1, x2, x3, x4}. We observe choice on budgets
{x1, x2}, {x2, x3}, {x3, x4}, {x4, x1} and {x1, x2, x3}.

I Consider choices:
I c({x1, x2}) = {x1}
I c({x2, x3}) = {x2}
I c({x3, x4}) = {x3}
I c({x4, x1}) = {x4}.

I What about choice on {x1, x2, x3}?



An Example

Suppose we work with singleton-valued choice correspondences...

x1 x2

x4 x3

Figure: The only choice from {x1, x2, x3} that doesn’t create a reversal relative
to the choices on {x1, x2} and {x2, x3} is to choose {x1}. But this choice
creates another cycle too: x1 �c x3 �c x4 �c x1.
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Takeaway

I Every choice over {x1, x2, x3} must create another cycle.

I In fact, every choice correspondence that chooses

x1 �c x2 �c x3 �c x4 �c x1

chooses in at least one other additional cycle. We say that the
potential cycle has the propagation property.



A Tradeoff

I Fundamental Tension: The more exhaustive the set of
budgets we observe choice on, the richer our understanding of
an agent’s behavior, but the harder it becomes to interpret
and measure inconsistency.



Related Results

I Propagation-free environments exist, but are degenerate in a
way we make precise. Most experiments will suffer from
possibility of some propagation.

I Propagation holding ‘uniformly’ is necessary and sufficient for
the weak axiom of revealed preference to characterize
rationalizability (in the sense of Richter).



Application: Structure of Inconsistency

I In all but very sparse experiments, choice cycles can
propagate.

I This means not all choice cycles should necessarily be treated
independently. Some may be ‘explainable’ by others.

I Measures of irrationality should account for the structure of
the environment.



A Relation On Cycles

I Suppose we conduct a (finite) experiment where we observe a
choice correspondence c .

I Let Z denote the collection of all observed revealed preference
cycles.

I Say z explains z ′ if choices making up z ′ either (i) also make
up part of z or (ii) are on budgets such that, given the choices
making up z , any choice would yield another cycle.



An Example: Revisited

Consider our choice function from earlier, with c({x1, x2, x3}) = {x1}.

x1 x2

x4 x3

z1z2

Figure: All choices making up z2 either (i) also make up z1 or (ii) are on
budgets such that given the choices making up z1 any choice yields another
cycle, thus z1 explains z2.
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The Irrational Kernel

A collection of cycles I ⊆ Z is an irrational kernel of the data if:

(i) Explanatory Power: Every cycle in Z is (at least indirectly)
explained by some cycle in I.

(ii) Independence: No two cycles in I (even indirectly) explain
each other.



The ‘Rank’ of Z

I Irrational kernels may not be unique. But every irrational
kernel has the same cardinality.

I Intuition: Irrational kernel is like ‘maximal independent set’ of
cycles, given the structure of the choice environment.

I Size of irrational kernel is a principled refinement of simply
counting cycles: how many independent cycles explain the
inconsistency.



Data

We apply this theory to the data set of Harbaugh, Krause, and
Berry (2001 AER).1

A Few Observations:

I For irrational subjects, vast majority have some ‘dependent’
cycles.

I For subjects with ‘lots’ of cycles, irrational kernel is generally
far smaller (order of magnitude).

I Observe reversals relative to näıvely counting cycles when
comparing relative degree of rationality between agents.

1We thank Bill Harbaugh for generously sharing this data.



Conclusions

I The structure of a choice experiment can have strong
implications for the interpretation of potential inconsistency.
Specifics of which budgets we observe choice on matters!

I We characterize how the structure of an experiment may
cause cycles to propagate, and how to account for this
phenomenon in data.



Thank you!

Any Questions?



Technical Appendix



Choice Environments

A choice environment is a pair (X ,Σ), where:

I X is a set of alternatives.

I Σ ⊆ 2X \ {∅} is a collection of non-empty subsets of X called
budgets.

These budgets correspond to the subsets of X from which we
observe the agent choose.

I Assumptions on Σ are assumptions on observability.



Choice Data

A choice correspondence is a map c : Σ→ 2X \ {∅} satisfying:

(∀B ∈ Σ) c(B) ⊆ B.

The data set associated with a choice correspondence c is:{
B, c(B)

}
B∈Σ.

In particular, we assume we observe the budget each choice arises
from.



Revealed Preferences

The revealed preference pair associated to c , denoted (%c ,�c),
is defined via:

I x %c y if there exists a budget B ∈ Σ such that x , y ∈ B, and
x ∈ c(B).

I x �c y if there exists a budget B ∈ Σ such that x , y ∈ B,
x ∈ c(B), and y 6∈ c(B).



The -ARPs

I A choice correspondence satisfies the weak axiom of revealed
preference (WARP) if it makes no choice reversals:

x %c y =⇒ x 6≺c y .

I It satisfies the generalized axiom of revealed preference
(GARP) if it contains no finite choice cycles of the form:

x0 %c x1 %c · · · %c xN−1 �c x0.



Rationalizable Choice

I A choice correspondence c is strongly rationalizable if there
exists a weak order � on X such that:

(∀B ∈ Σ) c(B) =
{
x ∈ B : ∀y ∈ B, x � y

}

I (Richter ’66 Ecta): A choice correspondence is strongly
rationalizable if and only if it satisfies GARP.



The Budget Graph

For a choice problem (X ,Σ) its budget graph Γ is the undirected
graph with vertex set VΓ = X and edge set:

EΓ =

{
{x , y} ⊆ X : ∃B ∈ Σ s.t. {x , y} ⊆ B

}
.



An Example

x0 x1 x2 x3 x4

X

B1 B2 B3

B4

(a) A choice environment.

x0 x1

x2 x3

x4

Γ

(b) The budget graph.

Figure: A choice environment with five alternatives and three budgets.



Cyclic Collections

For a loop γ = (Vγ ,Eγ), a collection of budgets Bγ ⊆ Σ is a cyclic
collection for γ if:

(i) Every edge in γ is contained in some budget in Bγ ,

(∀e ∈ Eγ) (∃B ∈ Bγ) e ⊆ B.

(ii) Every budget in Bγ contains at least one edge of γ,

(∀B ∈ Bγ) (∃e ∈ Eγ) e ⊆ B.



Coverage

A cyclic collection Bγ for a loop γ is covered if there exists a
budget B̄ ⊆ ∪B̃∈Bγ B̃ that either:

(i) Contains Vγ ; or

(ii) Contains a pair of elements of Vγ that are not connected by
an edge in Eγ .

Note: Condition (i) implies (ii) if and only if |Vγ | > 3.



Propagation of Choice Cycles

A loop γ has the propagation property if every choice
correspondence that chooses cyclically around γ necessarily makes
another choice cycle elsewhere in the data.

I Ex-ante property of an experiment

I Confounds interpretation of inconsistency



A Characterization of Propagation

Theorem

A loop in the budget graph has the propagation property if and
only if all of its cyclic collections are covered.



Experimental Design

Propagation makes interpretation of inconsistency difficult. Can we
remedy this with careful design of experiments?

Theorem

Let (X ,Σ) be a choice environment, with |X | < +∞. Suppose
that no loop in the budget graph capable of supporting a choice
cycle has the propagation property. Then every loop γ in the
budget graph has a unique cyclic collection satisfying exactly one
of the following:

(i) Bγ consists of a single budget; or

(ii) Bγ consists exclusively of two-element budgets.



The Power of the Weak Axiom

I GARP is necessary and sufficient for strong rationalizability,
no matter the structure of (X ,Σ).

I The power of WARP relative to GARP varies drastically with
the structure of (X ,Σ). WARP becomes ‘stronger’ when Σ is
‘richer.’

I Only handful of examples of what constitutes a ‘rich’ choice
environment. Poor understanding of what constitutes
‘richness’ for sampling.



A General Richness Condition

Call a budget collection Σ well-covered if, for every loop γ in its
budget graph, every cyclic collection for γ is covered.

I Well-coveredness means propagation occurs uniformly: every
loop in the budget graph has the propagation property.

I Recursive flavor: a covering budget for one loop implies there
is a bisecting edge in the budget graph. Resulting sub-loops
must also have all their cyclic collections covered.



Well-covered Budget Collections

Well-coveredness is the weakest experimental richness condition
that makes WARP and GARP coincide.

Theorem

Let (X ,Σ) be a choice environment. The weak axiom of revealed
preference is characteristic of strong rationalizability if and only if
Σ is well-covered.



Generators for Cycles

Let Z denote the set of all choice cycles in a given data set. A
collection of budgets Gz ⊆ Σ is a generator for a cycle z if:

(i) For every relation xi %c xi+1 (resp. xi �c xi+1) in the cycle,
there exists a B ∈ Gz such that xi , xi+1 ∈ B and xi ∈ c(B)
(resp. xi ∈ c(B) and xi+1 6∈ c(B)).

(ii) For every B ∈ Gz , there is some xi , xi+1 ∈ B with xi ∈ c(B),
and if xi �c xi+1 then additionally xi+1 6∈ c(B).



A Dependence Relation

I For two choice cycles z , z ′ ∈ Z, we say z directly explains z ′,
denoted z =⇒ z ′, if there exist generators for the cycles
Gz ,Gz ′ ⊆ Σ such that:

Gz ′ ⊆ Gz ∪
{
B ∈ Σ : B covers Gz

}
.

I Given only those choices made on budgets in Gz , every choice
on a covering budget necessarily forces another cycle.



The Irrational Kernel

Consider the transitive closure of =⇒ on Z, denoted =⇒∗. We
call a collection I ⊆ Z an irrational kernel for the data if:

(i) Explanatory Power: For all z ′ ∈ Z there exists a z ∈ I such
that:

z =⇒∗ z ′.

(ii) Independence: For all distinct z , z ′ ∈ I, z 6=⇒∗ z ′.



The ‘Rank’ of Z

For a particular data set, there may not be a unique irrational
kernel. However, the size of the irrational kernel always
well-defined.

Theorem

Let (X ,Σ) be a choice experiment with |X | < +∞. Then for any
choice correspondence, there exists an irrational kernel. Moreover,
every irrational kernel has the same cardinality.
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