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Abstract

We investigate the manner in which the power of the weak axiom of revealed

preference is affected by the completeness of the choice environment. We fully

characterize those domains on which the weak axiom coincides with strong ra-

tionalizability for arbitrary choice correspondences. We also provide a related

result that characterizes those domains on which the strong rationalizability of a

choice correspondence is equivalent to (i) the satisfaction of the weak axiom, and

(ii) the strong rationalizability of its restrictions to suitable collections of small

sets. Our proof technique involves a generalization of many of the differential

concepts of classical demand theory to the abstract choice model. We conclude

with an application to the problem of aggregating incomplete preferences.
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1 Introduction

The weak axiom of revealed preference, corresponding to the absence of pairwise re-

versals in observed choice behavior, is among the most elementary and normatively

appealing consistency criteria. A particularly striking feature of the weak axiom is

how dependent its implications are upon the structure of the domain of choice. When

choice is observed on a complete collection of budgets, consistency with respect to the

weak axiom is equivalent to rational behavior: the weak axiom completely characterizes

the testable implications of rationality (see Arrow (1959), Sen (1971)).1 Conversely,

when choice is observed only on an exceedingly sparse collection of budgets, the satis-

faction of the weak axiom may become vacuous.

Complete domain hypotheses are commonplace in choice theory. In spite of this,

the manner in which the structure of the domain of choice affects the implications of

the weak axiom is generally very poorly understood. In the context of experiments, this

implies a non-trivial interaction between the experimental design, that is the choice of

which budgets to solicit subjects’ choices from, and the interpretation of any potential

inconsistency. For example, if the weak axiom of revealed preference is characteristic of

rationality for a given experiment, then clearly no choice cycle of length three or more

can occur in isolation: there must also be a choice reversal. For such experiments, the

testable implications of the transitivity of preference are wholly subsumed by pairwise

coherency of choices.

Reliance on such assumptions also limit our ability to test new models. It is common

to characterize the testable implications of such theories under the assumption of a

complete domain. Broadly speaking, the consequence of this assumption is that the

empirical content of these models then tends to be characterized by an appropriate

1This is sometimes aptly referred to as the ‘fundamental theorem of revealed preference.’ See, for

example, Ok and Tserenjigmid (2019).
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variant of the weak axiom (e.g. Manzini and Mariotti (2007), Masatlioglu et al. (2012),

Evren et al. (2019)) or at the least to rely heavily on the observation that on a complete

domain, ‘all cycles imply two-cycles’ (e.g. Bernheim and Rangel (2009)). Outside the

realm of theory, however, full domain hypotheses are generally difficult to justify on

either positive or normative grounds. De Clippel and Rozen (2014) seek to understand

what can be empirically tested under incomplete data; our work here may be seen as

part of a dual approach of trying to better understand how robust such results are

to the relaxation of these assumptions without fundamentally altering their testable

implications. It seems likely that future results in this direction will require ideas

formally extending those studied here in the ‘base case.’

We undertake the systematic study of how the power of the weak axiom varies with

the richness of the collection of budgets choice is sampled on. In particular, we fully

characterize those choice environments for which the weak axiom of revealed prefer-

ence exhausts the testable implications of rational choice. We show that the class of

environments includes not only complete collections of budgets, but also considerably

smaller ones, and the property of having a strong weak axiom is not, in general, pre-

served under the addition of new budgets nor the restriction to sub-collections. We also

consider the related problem, spiritually similar to the integrability theory of classical

demand, of when the weak axiom, in conjunction with a ‘local’ no-cycles condition,

characterizes rational choice. It turns out that in general, such a theories also require

a suitably rich domain of budgets, though a weaker richness condition than is required

for the weak axiom alone to suffice.

Example 1. Consider four alternatives {a, b, c, d}. Suppose an individual is presented

with choices between {a, b}, {b, c}, {c, d}, and {d, a}. If this individual were to choose

a in the presence of b, b in the presence of c and so forth cyclically, her choice be-

havior would be consistent with the weak axiom. This is because her choice behavior
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contains no preference reversal.2 However, it would be inconsistent with preference

maximization, as it would violate the generalized axiom: it contains a cycle.

Suppose now the agent were additionally presented with choices over {a, b, c}. The

presence of the cycle from her other choices would necessarily force her to make another

choice cycle over other alternatives: if she did not choose exclusively a as her most-

preferred alternative, she would create a revealed preference reversal when this choice

was considered alongside those preceding it. But, were she to choose exclusively a,

then by revealing a to be preferable to c she would have chosen cyclically over a, d,

and c. The structure of this collection of budgets ensures that any cycle of choices

over all four alternatives necessarily induces other choice cycles in the data, though

not necessarily a choice reversal.

Finally, suppose the agent is now presented with choices over the four binary bud-

gets, {a, b, c}, and {c, d, a}. The presence of the cycle from her first four choices now

necessarily forces her to make a preference reversal in her choices from the latter two

budgets. If the agent were to choose anything but a from {a, b, c}, a reversal would be

immediate. But then any choice from {a, c, d} constitutes a choice reversal. Though

this collection of budgets is far from complete, the budgets nevertheless intersect in

such a manner as to force any revealed preference cycle to necessarily induce a concomi-

tant revealed preference reversal. Were these choice sets selected by an experimenter

to be presented to the individual, the experimental setup would preclude the existence

of testable implications of preference transitivity beyond pairwise coherent choice.

2In fact, it would be impossible for the agent to violate the weak axiom as no budget in this

environment contains a common pair of alternatives.
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2 The Ex-Ante Power of the Weak Axiom

2.1 Preliminaries

Let X be an arbitrary set of alternatives from which an agent chooses. Let Σ ⊆

2X \ {∅} be a collection of budgets which we observe the agent choose from. We

interpret the collection Σ as capturing the manner in which we are able to sample an

agent’s choices: we can observe an agent’s choice on a set B if and only if it belongs to

Σ. When Σ contains all non-empty, finite subsets of X, we will say that Σ is complete.

We refer to the tuple (X,Σ) as a choice environment.

A mapping c : Σ → 2X \ {∅} is a choice correspondence if, for all B ∈ Σ, it

satisfies c(B) ⊆ B. Let C(X,Σ) denote the collection of all choice correspondences

for the environment (X,Σ). Given a choice correspondence c ∈ C(X,Σ), a preference

relation � on X strongly rationalizes c if, for every budget we observe choice on,

the chosen element(s) are precisely those �-maximal alternatives:

(∀B ∈ Σ) c(B) =
{
x ∈ B : ∀y ∈ B, x � y

}
.

Given a choice correspondence c, its revealed preference is a pair of relations (%c,�c)

defined via: x %c y if there exists some B ∈ Σ such that x, y ∈ B and x ∈ c(B), and

x �c y if there exists some B ∈ Σ such that x, y ∈ B, x ∈ c(B) and y 6∈ c(B).

A choice correspondence c satisfies the weak axiom of revealed preference if it con-

tains no pairwise reversals: x %c y implies y 6�c x.3 Notably, for choice correspondences

satisfying the weak axiom, �c is indeed the asymmetric part of %c, allowing us to speak

of a single revealed preference relation for such correspondences. We say c obeys the

generalized axiom of revealed preference (sometimes referred to as ‘congruence’) if

3Mariotti (2008) provides a characterization of those choice correspondences that obey the weak

axiom, for general environments, in terms of the the ability of the choices to be ‘justified’ by an

asymmetric relation.
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(%c,�c) contains no finite cycles of the form:

x0 %c x1 %c · · · %c xN �c x0,

It is without loss to suppose that these alternatives are all distinct, as any cycle contain-

ing multiple appearances of the same alternative necessarily also contains a sub-cycle

consisting only of distinct alternatives. We will denote the set of all choice corre-

spondences for the environment (X,Σ) that satisfy the weak and generalized axioms,

respectively, by W(X,Σ) and G(X,Σ). It was shown by Richter (1966), making use of

an extension theorem due to Szpilrajn (1930), that a choice correspondence is strongly

rationalizable by a preference relation if and only if it obeys the generalized axiom.4 In

light of this, we will interchangeably refer to the satisfaction of the generalized axiom

as strong rationalizability.

2.2 A Characterization

For purposes of combinatorial bookkeeping, it will be helpful to define an auxiliary

structure that, for a given choice environment (X,Σ), encodes precisely which pairs of

alternatives it is even possible for a preference to be revealed between. Let Γ(X,Σ)

be an undirected graph whose vertex set is X, and whose edge-set EΓ is given by the

(symmetric) relation of two vertices belonging to some common budget:

{x, y} = exy ∈ EΓ ⇐⇒ ∃B ∈ Σ s.t. {x, y} ⊆ B.

We term Γ(X,Σ) the budget graph. Equivalently, the budget graph is the smallest

undirected network with vertex set X for which the reflexive closure of the edge relation

contains every revealed preference arising from a choice correspondence satisfying the

weak axiom.5

4We note, however, that Szpilrajn (1930) acknowledges the priority of Banach, Kuratowski, and

Tarski in discovering, though not publishing, the result.
5The revealed preference arising from the ‘complete indifference’ choice correspondence, for exam-

ple, obtains this bound.
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(a) A choice environment with five alter-

natives and three budget sets.

x0 x1

x2 x3

x4

Γ

(b) The budget graph associated with

this environment.

Figure 1: A simple choice environment and its corresponding budget graph. The coloring of the

edges in the budget graph indicates which budgets are responsible for the edge’s inclusion in the graph.

For a given c ∈ W(X,Σ) and any e ∈ EΓ there is a well-defined (possibly empty)

restriction of the revealed preference %c to the edge %c |e. This is because an edge

e = {x, y} is itself a two-element subset of the graph’s vertex set, thus:

%c |e = %c ∩ {x, y} × {x, y}

is well-defined. Similarly, given a collection of edges E ′ ⊆ EΓ, we define:

%c |E′ =
⋃
e∈E′

%c |e.

A loop in Γ is a connected, finite subgraph γ = (Vγ, Eγ) such that every vertex in Vγ

belongs to precisely two edges in Eγ. Given a loop γ ⊆ Γ(X,Σ), a collection of budgets

Bγ ⊆ Σ is a cyclic collection for γ if, for every e ∈ Eγ there exists a B ∈ Bγ with

e ⊆ B. A cyclic collection for a loop γ is simply a collection of budgets for which there

is some choice correspondence c̃ ∈ C(X,Bγ) that reveals a preference on every edge in

the loop.6 Our choice of terminology, however, betrays intent: we will be specifically

interested in those collections that allow for cyclic choices around the loop and, in

particular, those which admit extensions to all of Σ that obey the weak axiom.

Our ability use a particular cyclic collection to construct a choice correspondence

that satisfies the weak axiom, but not the generalized, depends critically on how the

6Note that for every loop in Γ(X,Σ), there exists at least one cyclic collection.
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collection intersects the remaining budgets in Σ. Given a loop γ and cyclic collection

Bγ, we say Bγ is covered if either:

(i) There exists a B̄ ∈ Σ|Bγ such that Vγ ⊆ B̄; or

(ii) There exists a B̄ ∈ Σ|Bγ such that B̄ contains a pair of elements of Vγ that are

not connected by any edge in Eγ,

where we define the restricted collection Σ|Bγ via:

Σ|Bγ =

{
B̄ ∈ Σ : B̄ ⊆

⋃
B∈Bγ

B

}
.

Note that condition (i) implies (ii) if and only if |Vγ| > 3. Practically speaking, covering

budgets can be interpreted as choice sub-problems that are severely constrained by

choices on a cyclic collection. If choices on some cyclic collection are constitute a GARP

violation, it is easy to choose from budgets not contained within the cyclic collection

without creating a WARP violation, by simply choosing from the (non-empty) subset

of alternatives that do not lie within the cyclic collection. If a budget covers the cyclic

collection, however, then the ability of a subject to make a pairwise consistent choice

from the covering budget is constrained.

Call a choice environment (X,Σ) well-covered if, for every loop γ in the budget

graph Γ(X,Σ), every cyclic collection Bγ for γ is covered. Well coveredness, in essence,

generalizes the classical argument that on a complete domain, every GARP violation

implies a WARP violation (given a GARP violation, the complete domain forces the

subject to choose from precisely the subset of alternatives making up the cycle). It

requires instead only that the agent be forced to choose from some budget covering the

collection on which the cycle is chosen. It turns out this is enough: the well-coveredness

of Σ is both necessary and sufficient for the weak axiom of revealed preference to

coincide with strong rationalizability for any choice correspondence.
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Theorem 1. Let (X,Σ) be a choice environment. The weak axiom of revealed pref-

erence is necessary and sufficient for strong rationalizability if and only if (X,Σ) is

well-covered.

Consider again the example from the introduction. In the case where the agent was

presented with four budgets {a, b}, {b, c}, {c, d}, and {a, d}, the budget graph has a

single loop, and the sole cyclic collection for this loop is uncovered. Thus this choice

environment is not well-covered, and it is of course possible for the agent to choose

cyclically in a manner violating the generalized axiom but consistent with the weak.

Now, consider the environment when the budget {a, b, c} is added. This new budget

serves to cover the loop of length four. However, it also adds two new loops of length

three to the budget graph, formed by addition of the bisecting edge {a, c}. All of the

cyclic collections for the loop with edges {a, b}, {b, c}, and {c, a} are covered. However

this is not true for the loop with edges {c, d}, {d, a}, {a, c}. Only by also adding yet

another budget, {c, d, a}, is well-coveredness achieved. This last budget adds no new

loops to the budget graph but, critically, serves to ensure that the cyclic collection for

the loop {c, d}, {d, a}, {a, c} becomes covered. It is this interlocking nature of the

budget collections in the choice environment that well-coveredness characterizes.

2.3 Proof Sketch

The proof of the necessity of the well-coveredness of (X,Σ) for the weak axiom to

coincide with the generalized proceeds by contraposition. We exhibit a means of con-

structing a choice correspondence, obeying the weak axiom but not the generalized,

that relies only on the existence of a single loop with a single uncovered cyclic collec-

tion. The interested reader is referred to the Appendix. The proof of sufficiency is split

over three lemmas. The first is a simple extension result which says, if we are given a

loop γ and cyclic collection for it Bγ, that if we can find a choice correspondence c̃ on

the restricted domain Σ|Bγ that cycles on γ and obeys the weak axiom, then there is
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no obstruction to extending c̃ to the full domain Σ.

Lemma 1. Let (X,Σ) be a choice environment and let γ be a loop in Γ(X,Σ). There

exists choice function c ∈ W(X,Σ) such that %c |Eγ contains a cycle if and only if

there exists a cyclic collection Bγ and choice function c̃ ∈ W(X,Σ|Bγ ) such that %c̃ |Eγ
contains a cycle.

The next lemma characterizes those minimal cycles that can arise from a choice

correspondence that satisfies the weak axiom. It says that about any triangle in the

budget graph, there is a choice correspondence that both (i) satisfies the weak axiom,

and (ii) chooses cyclically around this triangle if and only if there exists an uncovered

cyclic collection for the triangle.

Lemma 2. Let (X,Σ) be a choice environment and let γ be a loop in Γ(X,Σ) with

|Vγ| = 3. Then there exists a choice correspondence c ∈ W(X,Σ) with %c |Eγ a cycle

if and only if there exists a cyclic collection Bγ that is not covered.

Unfortunately, such a clean characterization does not obtain for longer loops. Lemma 3

however shows that, for loops of length four or more, if every cyclic collection for the

loop is covered, then even if we cannot rule out the existence of a c ∈ W(X,Σ) that

chooses cyclically around the loop, if such a c exists, it induces at least one other cycle

elsewhere, around some strictly shorter loop.

Lemma 3. Let (X,Σ) be a choice environment and let γ be a loop in Γ(X,Σ) with

|Vγ| > 3. Suppose there exists a choice correspondence c ∈ W(X,Σ) where %c |Eγ
contains a cycle. If every cyclic collection Bγ is covered, then there exists a loop γ′ in

Γ(X,Σ) such that |V ′γ | < |Vγ| and %c |Eγ′ contains a cycle.

The ‘sufficiency’ direction of Theorem 1 then follows from a straightforward contra-

position argument: suppose there exists some choice correspondence c which satisfies

the weak, but not generalized, axiom. Then c contains some cycle of length three or

more around some loop in the budget graph. If the loop was of length three, then by
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Lemma 2 the loop contains an uncovered cyclic collection and we conclude (X,Σ) is

not well-covered. If the loop was of length four or greater and contains an uncovered

cyclic collection, we again conclude (X,Σ) is uncovered, thus suppose that all of its

cyclic collections are covered. Then by Lemma 3 there is a shorter cycle as well. It-

erating this logic finitely many times, we obtain either a loop of length greater than

three with an uncovered cyclic collection, or a cycle of length three, which by Lemma 2

implies an uncovered cyclic collection. In both these cases we conclude that (X,Σ) is

not well-covered.

2.3.1 Examples of Well-covered Environments

Firstly, any complete environment is well-covered. Thus Theorem 1 extends the clas-

sical results of Arrow (1959) and later Sen (1971).

Example 2 (Complete Abstract Environments). Let X be a set, and suppose Σ con-

tains all finite subsets of X. Then Σ is well-covered: letting γ be a loop, Vγ ∈ Σ. More

generally, it is straightforward to show that if Σ either contains all cardinality two or

all cardinality three budgets, it is well-covered.

More generally, if the budget collection is closed under finite unions, then it is

well-covered. See, for example, Theorem 4 in Kochov (2010).

Example 3 (Collections Closed Under Unions). Let X be a set and suppose that, for

all B,B′ ∈ Σ, that B ∪ B′ ∈ Σ. Then Σ is well covered: for any loop γ, let Bγ denote

an arbitrary cyclic collection. Since Eγ is finite, there exists a finite sub-collection of

Bγ that is also a cyclic collection for γ. The union of this sub-collection is a budget by

hypothesis, and covers Bγ.

Another example of well-covered budget collections arise when there is some natural

(weak) order on the space of alternatives, and budgets consist of intervals in this order.

Such environments naturally arise when choice sets are defined simply by upper and

lower bounds.
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Example 4 (Interval Budgets). Suppose (X,≤X) is a weakly ordered set, and that

Σ consists of order intervals, i.e. sets of the form [x, y] = {z ∈ X : x ≤X z ≤X y},

then it is well-covered. Letting γ be a loop in the budget graph, since Vγ is finite, it

contains a ≤X-minimal element, xi. Without loss, suppose the adjacent vertices satisfy:

xi−1 ≤X xi+1. Then, since budgets are intervals, every budget for the edge {xi, xi+1}

contains xi−1, implying every cyclic collection for γ is necessarily covered and hence Σ

is well-covered.

The argument showing any collection of interval budgets is well-covered relied crit-

ically on the ‘intermediate value’ property of order intervals. We may relax this re-

quirement by substituting a suitable comparability criterion between budgets. Recall

that if (X,≤X) is a lattice, a subset B dominates a subset B′ in the strong set order

if, for all x ∈ B and x′ ∈ B′, x ∨ x′ ∈ B and x ∧ x′ ∈ B′.

Example 5 (Comparability of Budgets). Suppose (X,≤X) is a lattice, and that Σ

consists of totally ordered subsets. If every pair of budgets in Σ is comparable in the

strong set order, then Σ is well-covered. For a formal proof, see Appendix I.

Finally, it is easy to construct new well-covered collections from existing ones. In

particular, well-coveredness is preserved by the taking of certain restrictions.

Example 6 (Restrictions of Well-covered Environments). Suppose (X,Σ) is well-

covered, and A ⊆ X. Then (X,Σ|A) is well-covered, where Σ|A = {B ∈ Σ : B ⊆ A}.

This follows straightforwardly by observing that, if Σ|A were not well-covered, then its

uncovered cyclic collections could not become covered by passing to Σ, as all the added

budgets must contain alternatives that do not belong to A.

2.4 Relation to the Classical Demand Framework

The question of when the weak axiom of demand theory is empirically distinguishable

from the strong axiom in the classical demand framework has a long history. Rose
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(1958) first proved that these axioms coincide in the case of two goods, though Gale

(1960) soon after established that this result did not hold for the case of three or more

goods. In a recent contribution, Cherchye et al. (2018) characterized those linear budget

collections for which several variants of the demand-theoretic weak and strong axioms

coincide. Interestingly, they find that many widely used price-consumption datasets

have large subsets exhibiting insufficient price variation to independently distinguish

these axioms.7 Given the apparent empirical shortcomings of field data for purposes

of independently testing these phenomena, one is naturally led to consider how to

construct simple, finite, laboratory experiments capable of rectifying this deficiency.

Our Theorem 1 then provides a complete characterization of precisely which abstract

choice experiments have testable implications of the generalized axiom in excess of the

weak. Moreover, it is empirically and computationally desirable then to understand the

problem for those environments in which one must take seriously indivisibilities, price

non-linearities, or other economic phenomena contrary to the linear budget paradigm,

which our model speaks to.

While Theorem 1 holds equally well when X = Rn
+ and elements of Σ are linear

budgets, our results neither imply nor are implied by those of Cherchye et al. (2018).

We assume no intrinsic order structure on the set of alternatives, thus make no re-

quirement of a rationalizing preference being monotone. Particularly, we allow for

choice correspondences that do not satisfy Walras’ law. As such, our paper holds for

more general data sets where the chosen commodity bundle does not lie on the bud-

get frontier, but as a consequence we require a purely choice-based notion of revealed

7They find that roughly 70% of the Spanish survey ECPF (Encuesta Continua de Presupestos

Familiares) panel dataset (see, for example Beatty and Crawford (2011)) satisfies their condition for

when a WARP-based analysis is equally informative as SARP-based. Even more drastically, roughly

97% of price triples in the British FES (Family Expenditure Survey) cross-sectional data set (see, for

example, Blundell et al. (2003), Blundell et al. (2008), Blundell et al. (2015)) satisfy their condition

for WARP and SARP to coincide.
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Figure 2: The frontiers of three linear budgets on R2
+. While the demand-theoretic weak and strong

axioms coincide for any collection of linear budgets for two commodities, the above choices satisfy the

choice-theoretic weak but not generalized axiom.

preference rather than one that makes use of the order structure of Rn.8 Additionally,

we consider the solution concept of strong rationalizability, under which we require

that the observed choices constitute the entirety of the agent’s optimal choices from a

given budget (classical references include Samuelson (1938), Houthakker (1950), Arrow

(1959)). This leads to a different notion of which ‘cycles’ constitute violations of our

notion of rationalizability, and hence to differing characterizations of which environ-

ments lead to such cycles inducing reversals, even when the class of budgets considered

is the same (see Matzkin and Richter (1991), Nishimura et al. (2017)). In light of this,

our results and those of Cherchye et al. (2018) are best thought of as complementary,

addressing different frameworks and valid in differing contexts.

We conclude this section with an example of a collection of linear budgets in the

8A consequence of this, however, is that our theory requires, as part of our definition of an obser-

vation, a complete description of the budget from which an agent chose. Walras’ Law, on the other

hand, provides an identifying assumption to pin down the budget set for an observation from only

price and consumption data.
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two-commodity case (and hence for which the classical demand variants of the weak

and strong axioms coincide) but which is not well-covered.

Example 7 (Non Well-covered Linear Budget Collection on R2
+). Let X = R2

+, and

consider three price tuples p0 = (1
5
, 1

5
), p1 = ( 1

21
, 1

3.5
)), and p2 = ( 1

3.5
, 1

21
). Let Σ

consist of the three wealth-normalized linear budget sets formed by these price vectors:

Bi = B(pi, 1) (see Fig. 2). Suppose an agent were to choose c(B0) = {(1, 4)}, c(B1) =

{(4, 1)}, and c(B2) = {(3, 3)}. These are all alternatives belonging to each budget

and, with the exception of the choice from B1 all lie on the budget frontier (recall that

we do not impose Walras’ law). Moreover, c satisfies the weak axiom but exhibits a

three-cycle:

(3, 3) �c (1, 4) �c (4, 1) �c (3, 3),

and hence the collection cannot be well-covered. This stands in comparison to Rose’s

result that the classical demand version of the weak axiom coincides with (weak) ra-

tionalizability in the two-commodity case, no matter the budget collection.

3 Abstract Choice and Integrability

3.1 Preliminaries

Well-coveredness of the budget collection is, in general, difficult to verify in practice, as

it requires checking every cyclic collection for covering budgets. Without extra struc-

ture on the problem, this may become computationally difficult for larger experiments.

Motivated by this difficulty, in this section we consider instead only those implications

of well-coveredness that are reflected in the structure of the budget graph. If a budget

collection is well-covered, clearly every loop in the budget graph of length four or more

must possess a bisecting edge, that is an edge connecting vertices of the loop that does

not belong to the loop’s edge set. A graph with this property is said to be chordal.

Critically, this property is efficiently verifiable: it is possible to determine whether a
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graph is chordal in linear time using standard methods (see, for example Rose et al.

(1976)).

In this section, we consider experiments with only a chordal budget graph, a nec-

essary, though not sufficient, condition for the well-coveredness of the collection. We

show that an experiment possesses a chordal budget graph if and only if strong ra-

tionalizability coincides with (i) the weak axiom, and (ii) a mild, discrete analogue of

the Slutsky symmetry axiom of differential demand theory. This serves as a trade-off

relative to Theorem 1: in exchange for requiring somewhat more structure than just

the weak axiom on the part of the choice data, one obtains an efficiently verifiable

minimal richness condition on the choice environment for no ‘small’ cycles to imply no

cycles of any kind.

Such results appear also in the mechanism design literature, where it is of great

interest to have criteria on type spaces that guarantee testing the global condition of

cyclic monotonicity (a cardinal form of the generalized axiom) reduces to testing only

pairwise comparisons (e.g. Saks and Yu (2005), Ashlagi et al. (2010), analogous to our

Theorem 1) or pairwise comparisons plus only ‘local’ no cycle conditions (e.g. Archer

and Kleinberg (2014) and Kushnir and Lokutsievskiy (2019), which are analogous to

our results in this section).

This result may be interpreted as an extension of integrability theory to the abstract

choice framework. In particular, on rich enough domains our theory allows for incom-

pletely observed, in particular potentially finite, data (corresponding to cases when

Σ is far from complete) as opposed to the classical theory which takes as primitive a

fully observed demand function. However, the relaxation to incomplete data can only

go so far: our results also establish the chordality of the budget graph as the weakest

possible richness condition on an environment under which strong rationalizability is

equivalent to the classical integrability criteria of the weak axiom, plus a ‘local no
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cycles’ condition.

3.2 Abstract Analogues of the Integrability Conditions

Let (X,Σ) be a fixed choice environment, with Γ(X,Σ) its budget graph. Let:

TΓ =
{
{x, y, z} ⊆ X : {x, y}, {y, z}, {x, z} ∈ EΓ

}
.

The combinatorial domain associated to the environment (X,Σ) is the tripleD(X,Σ) =

(X,EΓ, TΓ). The combinatorial domain essentially serves as a ‘triangulation’ of the set

of alternatives using only the information encoded in the budget graph. For a choice

correspondence c ∈ C(X,Σ) with revealed preference pair (%c,�c), we say that c is

locally rationalizable if we may extend (%c,�c) by a single relation � such that:9

(∀τ ∈ TΓ) � |τ is complete and transitive.

Local rationalizability is the ordinal analogue of the joint conditions of Slutsky negative

semi-definiteness and symmetry. It says nothing more than we may strongly rationalize

the revealed preference locally, about each triangle in the domain, much the same way

as the usual properties on the Slutsky matrix guarantee an economically suitable local

solution to the system of differential equations defining the integrability problem.

Local rationalizability is necessary, though not sufficient, for the strong rationaliz-

ability of c (as any strongly rationalizing preference relation is a local rationalization).

The fact that one must potentially consider an extension of %c is simply a consequence

of allowing for the possibility that Σ is highly incomplete and c does not reveal any

preference between some pairs in some triangles of TΓ.10

9Formally, we mean that (�,�) is an order pair extension of (%c,�c), where � is the asymmetric

component of �.
10If, for example, EΓ ⊆ Σ, there would be no need to consider an extension. In particular, on a

complete domain, no extension is ever necessary.
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(X̃, Ẽ, TΓ)

(d) The subdomain generated by T̃ =
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Figure 3: The various constructions associated with a choice environment. The shading of the

triangles is intended to indicate their inclusion in TΓ.

3.2.1 A Decomposition of Local Rationalizability

We may decompose the property of local ratinonalizability into two properties: the

weak axiom, and a property we term ordinal irrotationality, which serves as the ana-

logue of Slutsky symmetry for the abstract choice model. For a choice correspondence

c ∈ C(X,Σ) with revealed preference pair (%c,�c), we say that c is ordinally irrota-

tional if the revealed preference pair (%c,�c) admits an order pair extension (�,�∗)

of its revealed preference such that:

(∀τ ∈ TΓ) (�,�∗)|τ is complete and has no three-cycle,

and for which �∗ is asymmetric and contains the asymmetric component of �. Much

the same as Slutsky symmetry, ordinal irrotationality is a ‘no local cycles’ condition,

plus some minor regularity. Moreover, in conjunction with the weak axiom, it charac-

terizes local rationalizability.

Proposition 1. Let c ∈ C(X,Σ). Then c is locally rationalizable if and only if c both:
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(i) obeys the weak axiom; and

(ii) is ordinally irrotational.

The weak axiom and ordinal irrotationally are also logically independent, as the next

example shows.

Example 8 (Independence of WARP and OI). Let X = {x0, x1, x2, x3}, and suppose Σ

consists of two budgets, B1 = {x0, x1, x2}, and B2 = {x1, x2, x3}. Let c(B1) = {x1, x2}

and c(B2) = {x2}. Then c does not satisfy the weak axiom: x1 %c x2 but x2 �c x1.

However, c is ordinally irrotational: let �= %c ∪ {(x1, x3)} and �∗=�c ∪ {(x1, x3)}.

Then � ( �∗, �∗ remains asymmetric, and the restriction of (�,�∗) to each triangle

in the domain (here, given by the two budgets) contains no three-cycle.11

3.3 Sampling & Integrability

The satisfaction of the generalized axiom of revealed preference by a choice correspon-

dence implies its strong rationalizability and hence both the weak axiom and ordinal

irrotationality, no matter the structure of the domain. However, the sufficiency of

the weak axiom and ordinal irrotationality for the generalized axiom depends crucially

on the structure of the domain. Intuitively, the denser the budget graph (that is, the

greater the number of pairs of alternatives the experiment is capable of revealing a pref-

erence between), then the more triangles there will be and hence the more stringent

the requirement of local rationalizability will be.

This is not the whole story, however. What turns out to be most important is the

manner in which the triangles of the budget graph fit together. Certain collections of

triangles may fit together in ways that permit even cyclic revealed preferences to be

11This establishes that OI does not imply WARP. To rule out the converse implication, it suffices

to consider a three-element set of alternatives with three binary budget sets and any cyclic revealed

preference.
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locally rationalizable (e.g. Figure 4). What is needed is that there be enough ‘good’

collections of triangles in the budget graph to cover every loop, allowing the condition

of local rationalizability to rule out any possible cycles. This turns out to be possible,

precisely when the budget graph of the environment is chordal. For any environment

with a chordal budget graph, if a choice correspondence (i) obeys the weak axiom, and

(ii) is ordinally irrotational, then it is also strongly rationalizable. Moreover, possessing

a chordal budget graph, it turns out, is the weakest possible richness condition on Σ

under which any such traditional integrability result can possibly hold: for any environ-

ment without a chordal budget graph there always exist choice correspondences which

obey the weak axiom and are ordinally irrotational (and hence locally rationalizable),

yet nonetheless are not strongly rationalizable.

Theorem 2. Let (X,Σ) be a choice environment with Γ(X,Σ) chordal. Then a choice

correspondence c ∈ C(X,Σ) is strongly rationalizable if and only if:

(i) It obeys the weak axiom; and

(ii) It is ordinally irrotational.

Moreover, (i) and (ii) are jointly equivalent to the strong rationalizability of c if and

only if Γ(X,Σ) is chordal.

As local rationalizability is always necessary for strong rationalizability, regardless of

the structure of the domain, we obtain the following corollary.

Corollary 1. Let (X,Σ) be a choice environment, and suppose Γ(X,Σ) is not chordal.

Then there exists a choice correspondence which is locally, but not strongly, rationaliz-

able.

We emphasize that Γ(X,Σ) being chordal is a requirement of sufficient ex-ante

richness of the choice environment. A given pair of alternatives is connected by an

edge in the budget graph if and only if there exists a choice correspondence on that
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environment capable of revealing a preference between them. Chordality specifically

requires that, given any GARP violation in the data, that the experiment is rich

enough that it is capable of revealing a preference between some non-adjacent pair of

alternatives belonging to the cycle.12

In comparison with the classical integrability theory, we critically do not suppose

a complete domain, or even an infinite data set. We allow for arbitrary environments,

and our results fully characterize just what is needed observationally for the usual in-

tegrability conditions of the weak axiom and ordinal irrotationality to extend. In par-

ticular, Theorem 2 imposes no analytic, point-set, or order-theoretic assumptions on

model primitives. This is particularly notable given the historical program of attempt-

ing to weaken the differentiability hypotheses of the classical integrability theory, e.g.

Berger and Meyers (1966), Hartman (1970), and Berger and Myers (1971). Nonethe-

less, there is a cost to this generality. In the classical theory, while one supposes a great

deal more structure on the budgeter or demand function and its domain, one obtains

a rationalizing utility with commensurately fine properties. Comparatively, all that is

guaranteed by Theorem 2 is a rationalizing weak order. This is the price, it appears,

of an integrability theorem that not only allows for finite data sets, but also imposes

no hypotheses that are non-falsifiable by such data sets. Put another way, Theorem 2

operates wholly within the empirical content of abstract choice model, in the sense of

Chambers et al. (2014).

12This contrasts with well-coveredness, which corresponds to the condition that, for any GARP vio-

lation, the experiment is rich enough to guarantee either a WARP violation, or a that some preference

is revealed between a non-adjacent pair in the cycle (see Lemmas 2 and 3).
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(b) A cyclic revealed preference (blue) and
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however retracts onto its outer boundary

loop, hence it is topologically non-trivial.

Figure 4: When subdomains fail to be either combinatorially trivial or topologically trivial, the

criterion of local rationalizability is too weak to guarantee the absence of cycles.

3.4 Proof Sketch

3.4.1 Simple Domains

While conceptually simple to state, the property of an environment having a chordal

budget graph is a difficult global property to work with for purposes of proving Theorem

2. We first establish an equivalent characterization of chordality, in terms of collections

of triangles in the associated domain, that is more suited to our purposes. Let T̃ ⊆ TΓ

be a collection of triangles in the budget graph. Let X̃ denote the points of X contained

within some element of T̃ , and Ẽ the subset of edges in EΓ contained in some element

of T̃ . Then the subdomain generated by T̃ is defined as the tuple:

D(X,Σ)|T̃ = (X̃, Ẽ, T̃ ).

We will be particularly interested in subdomains possessing specific structure. For

a finite T̃ , we say the subdomain generated by T̃ is combinatorially trivial if, for
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every pair τ, τ ′ ∈ T̃ , there is a unique sequence of of distinct elements of T̃ :

τ = τ1, τ2, . . . , τk = τ ′

where, for each 1 ≤ j ≤ k−1, the triangles τj and τj+1 share precisely a pair of common

elements. If one imagines an undirected graph whose nodes are the elements of T̃ and

whose edge relation is given by sharing a pair of common elements, then combinatorial

triviality amounts to asking the graph associated with the collection T̃ be a tree.

Similarly, for a finite collection T̃ we say that the subdomain generated by T̃ is

topologically trivial if it has no ‘holes’ in it in an appropriate sense.13 If one imagines

a subdomain as consisting of a graph whose triangles are ‘filled in’ forming a kind of

triangulated surface, topological triviality roughly asks that this surface be simply

connected or contractible.

We will say that a subdomain is simple if it is both combinatorially and topolog-

ically trivial. A loop γ = (Vγ, Eγ) in the budget graph is contained in a subdomain

(X̃, Ẽ, T̃ ) if Vγ ⊆ X̃ and Eγ ⊆ Ẽ. By abuse of notation, we will say the entire domain

is simple if every loop in it is contained in a simple subdomain. This turns out to be

equivalent to requiring that every loop in the budget graph possessing a bisecting edge.

Theorem 3. Let (X,Σ) be a choice environment. Then the domain D(X,Σ) is simple

if and only if the budget graph is chordal.

3.4.2 Discrete Calculus

We now argue that, on a simple domain, every choice correspondence satisfying (i)

the weak axiom, and (ii) ordinal irrotationality is strongly rationalizable. To do this,

we will recast our ordinal problem into a cardinal form that shares strong formal

13Formally, we say a subdomain D|T̃ is topologically trivial if it has a first Betti number of zero, i.e.

H1(D|T̃ ;R) = 0, where H∗ denotes simplicial homology with real coefficients. See Munkres (1984) p.

34.
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Figure 5: Given a choice correspondence, we may view the relations of its revealed preference as

specifying ordinal ‘flows’ along edges of the budget graph. The budget graph is the smallest network

such that this interpretation remains valid for any choice correspondence.

similarities with the classical differential approach. In particular, we make use of the

discrete exterior calculus, which is most suitable for our combinatorial structure.

A vector field, or 1-form, on the domain D = (X,EΓ, TΓ) is a map F : ÊΓ → R

such that F (x, y) = −F (y, x), where ÊΓ = {(x, y) ∈ X × X : {x, y} ∈ EΓ}.14 We

interpret such a map as describing a magnitude of flow from x to y, and where a

negative flow is simply interpreted as a flow in the opposite direction. Similarly, a

0-form on D is simply an element of RX , and a 2-form a map F : T̂Γ → R such that

F(xσ(0), xσ(1), xσ(2)) = sign(σ) · F(x0, x1, x2) for any permutation σ.

There are natural operators between the spaces of forms on D. For any 0-form f ,

we define the gradient of f to be the 1-form defined by:

grad(f)(x, y) = f(y)− f(x).

Similarly, for a 1-form F , its rotation, or curl, is defined pointwise as the 2-form:

rot(F )(x, y, z) = F (x, y) + F (y, z) + F (z, x).

It is straightforward to verify that both the gradient and curl are linear operators, and

that the image of the gradient operator is vector subspace of the kernel of the curl

operator. In particular, we term a 1-form F integrable if it belongs to the image of the

gradient operator and irrotational if it belongs to the kernel of the rotation. One may

14We let ÊΓ (resp. T̂Γ) denote the spaces of oriented edges (resp. triangles) of the budget graph.
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think of the curl operator as measuring how far from (cardinally) transitive a given

1-form is about each triangle in the budget graph.

We will be interested in the existence of an integrable vector field that is consistent

with the revealed preference pair (e.g. Figure 5). Let (%c,�c) denote the revealed

preference of a choice correspondence c. We say that a 1-form F is a cardinalization

of c if:

y %c x =⇒ F (x, y) ≥ 0,

and

y �c x =⇒ F (x, y) > 0.

For any choice correspondence c, let Kc denote the set of all 1-forms on D cardinalizing

(%c,�c). For any c, Kc is a convex cone. Moreover, Kc is non-empty if and only if c

obeys the weak axiom.15

3.4.3 Proof Sketch

Consider a subdomain (X̃, Ẽ, T̃ ) generated by some arbitrary finite collection T̃ of

triangles, and consider some (for sake of exposition) asymmetric, locally rational �c.

To define a cardinalization F on this domain, it suffices to choose the values of F on

those ordered pairs (x, y) where x �c y, as this uniquely determines the value of F on

all ordered pairs of the form (y, x). By this implicit choice of basis, we are identifying

the cone Kc with the interior of the positive orthant of the space of 1-forms. We

first consider the problem of whether there exists an irrotational cardinalization, a

necessary though generally not sufficient condition for the existence of an integrable

15Cardinalizations as we have defiend them are intimately related to the idea of preference functions.

See, for example Shafer (1974), Quah (2006), or Aguiar et al. (2020). Unlike previous work, however,

we do not assume that the cardinalization is defined for all pairs in X, but rather only those in

ÊΓ ⊆ X ×X.
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(b) A good ordering of the triangles, guar-

anteeing an irrotational cardinalization for

any locally rational binary relation.

Figure 6: On combinatorially trivial subdomains, one may always enumerate the triangles such that

any triangle shares at most a single edge with the union of those triangles preceding it. The existence

of such an enumeration guarantees a simple algorithm can construct irrotational cardinalizations for

any locally rational binary relation.

cardinalization:16

rotF = 0

F � 0.

Combinatorial triviality ensures a solution to this problem for any locally rational bi-

nary relation. Consider the subdomain of Fig. 6. Call an enumeration of the triangles

in the subdomain a ‘good ordering’ if it has the property that for any triangle in the

enumeration, its intersection with the collection of all preceding triangles consists of

at most a single edge. The combinatorial triviality of a subdomain guarantees good

orderings exist. Such orderings provide a roadmap to constructing an irrotational car-

dinalization: restricting any one triangle, an irrotational cardinalization exists, simply

by local rationality of �c. Consider now any adjacent triangle. Again by local ratio-

16We employ the vector notation x ≥ y to denote that x is component-wise larger than y. We will

write x > y to denote that x is component-wise greater with at least one component strictly so, and

x� y to denote that every component of x strictly exceeds that of y.
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nality we can find an irrotational cardinalization for just this triangle. However, we

can form an irrotational cardinalization on the subdomain generated by both triangles

together by ensuring the values of the flows on each triangle agree on the common edge

the triangles share. This can always be attained by choosing irrotational but otherwise

arbitrary flows on each triangle then multiplying the flows on one of the two by an ap-

propriate positive scalar. More generally, in any good ordering no triangle shares more

than a single edge with the collection of all preceding triangles, and thus an inductive

application of this argument guarantees an irrotational cardinalization for any locally

rational relation on a combinatorially trivial subdomain.17

Thus we are guaranteed that for any locally rational �c, on any combinatorially

trivial subdomain, the cone of consistent cardinalizations Kc intersects the subspace of

irrotational cardinalizations ker(rot). Indeed as Kc is the interior of the positive orthant

of the space of flows, the intersection K̃c = Kc ∩ ker(rot) will be of full dimension in

ker(rot), and we may choose a basis for this subspace identifying K̃c with the interior

of its positive orthant. Since the image of the gradient is a subspace of the kernel of

the curl, we may view the gradient as a linear map taking a 0 form to an irrotational

1-form. Thus, given our choice of basis for ker(rot), the existence of an integrable

cardinalization is equivalent existence of a u ∈ RX̃ such that:

gradu� 0.

By Gordan’s Alternative (see Gordan (1873)), exactly one of the following holds: (i)

17Without combinatorial triviality, irrotational cardinalizations are not guaranteeed exist, even for

locally rational binary relations; see, for example, Figure 4.(a). The locally rational relation on Figure

4.(b) does admit an irrotational cardinalization (the subdomain is combinatorially trivial), albeit not

an integrable one.
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the above problem admits a solution, or (ii) there exists a 1-form F such that:

grad> F = 0

F > 0

rotF = 0.

In particular, if no integrable cardinalization of �c exists, there is some non-zero F ∈

ker(rot) ∩ ker(grad>). However, this possibility is precisely ruled out by topological

triviality, which ensures that this intersection is {0}. For any two matrices A ∈ Rl×m

and B ∈ Rm×n such that AB = 0, there exist isomorphisms:

ker(A) ∩ ker(B>) ∼= ker(A>A+BB>) ∼= ker(B>)/im(A>).

Thus, in particular:

ker(rot) ∩ ker(grad>) ∼= ker(grad>)/im(rot>).

The reader familiar with simplicial homology will recognize that grad> is ∂1 and rot>

is ∂2, that is they are the homological boundary operators between the appropri-

ate spaces of real-valued chains on the simplicial complex (X̃, Ẽ, T̃ ). In particular,

the homology group (here, vector space) of the subdomain in dimension 1 with real

coefficients is precisely ker(grad>)/im(rot>), and hence topological triviality implies

ker(rot) ∩ ker(grad>) = {0}. Thus for any locally rational relation on a combinato-

rially and topologically trivial subdomain, there exists an integrable cardinalization,

precluding the existence of cycles supported on any loop contained in the subdomain.

On a simple domain, every loop is contained in some such subdomain, allowing us to

guarantee the generalized axiom holds.

3.5 Examples of Environments With Chordal Budget Graphs

Possessing a chordal budget graph is a much weaker notion than nearly any existing

‘completeness’ criterion for choice problems. Indeed, most notion of completeness
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actually yield a budget graph that is the complete graph on X, a significantly stronger

condition.

Example 9 (Complete Abstract Environments). Recall that for a general choice en-

vironment (X,Σ), the budget collection Σ is complete if it contains all finite subsets

of X. If Σ is complete, then clearly its budget graph is complete as well.

Another example of a class of normatively complete environments that have a com-

plete budget graph (and hence a simple domain) are complete collections of linear

budgets.

Example 10 (Complete Collections of Linear Budgets). Suppose X = RL
+ and Σ

consists of all (income normalized) linear budgets B(p, 1) = {x ∈ R+
L : 〈p, x〉 ≤ 1} for

all p ∈ RL
++. In light of the argument in the complete abstract environments example,

it suffices to show that every pair of distinct vectors of commodities forms an edge in

the budget graph. Consider x, y ∈ RL
+, x 6= y and let x∨y denote their component-wise

supremum. Let B(p̃, 1) denote any linear budget containing x∨y; then B(p̃, 1) contains

both x and y and hence {x, y} ∈ EΓ. Thus the budget graph is again complete, and

hence chordal.

More generally, the linearity of the budgets played no role verifying the simplicity

of the domain, yielding a natural generalization to the broader class of budget sets

considered by Forges and Minelli (2009).

Example 11 (Complete Forges-Minelli Environments). Let X = RL
+. We will term Σ

a complete Forges-Minelli budget collection if (i) every B ∈ Σ is compact and there

exists some increasing, continuous gB : RL
+ → R such that B = {x ∈ RL

+ : gB(x) ≤ 0},

and (ii) for every x ∈ RL
+, there exists some B ∈ Σ such that x ∈ B. The budget graph

associated with any complete Forges-Minelli environment is complete: for any distinct

x, y ∈ RL
+, by (ii) there exists some B̃ ∈ Σ containing x ∨ y. By (i), B̃ is downward

closed, hence x, y ∈ B̃ too.
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Our next example is of collections of budgets that satisfy a natural notion of com-

pleteness but nonetheless yield a budget graph that is generally less-than-complete.

Example 12 (Identifying Experiments). Let X be a locally compact Polish space.

We consider those budget collections studied by Chambers et al. (2020) in the context

of the non-parametric identification of continuous preferences. These consist of those

collections Σ that consist of (i) a countable collection of binary sets, (ii) such that

∪B∈ΣB is dense in X, and (ii) such that for all x, y ∈ ∪B∈ΣB, {x, y} ∈ Σ. When

X is uncountable, the budget graph will contain uncountably many isolated vertices.

However, for any such experiment by (i) and (iii) the budget graph will be the complete

graph on some countable subset of vertices (along with its isolated vertices) which

nonetheless is chordal.

Of course, Theorems 1 and 2 are intimately related and, in particular, any well-

covered environment has a simple domain.

Example 13 (Well-covered Abstract Environments). If (X,Σ) is a general choice

environment with Σ well-covered, then the budget graph is chordal

4 Applications

4.1 Cardinality-Constrained Choice

The complete cardinality-constrained problem, in essence considered by Arrow (1959),

is one of the most well-known examples of a domain on which the weak axiom is equiv-

alent to strong rationalizability: if Σ contains every subset of X of cardinality at most

three, then the weak axiom suffices for the generalized. While Theorem 1 of provides

necessary and sufficient conditions with or without a cardinality constraint, for this

special case Theorem 2 also provides an intuitive means of characterizing specifically

which collections of small budgets are well-covered.
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Suppose Σ contains no budget of cardinality greater than three, and denote the

sub-collection of three-element budgets by Σ3 ⊆ Σ. Our first observation is that, for

the cardinality-constrained case, the weak axiom implies local rationalizability if and

only if every triangle in the budget graph is itself a budget.

Proposition 2. Let (X,Σ) be a cardinality-constrained choice environment. Then

every choice correspondence c that obeys the weak axiom is locally rationalizable if and

only if TΓ = Σ3.

Notably, this holds independently of the structure of the budget graph. Making use of

this, Theorem 2 immediately provides the following characterization of when the weak

and generalized axioms coincide for domains consisting of small budgets.

Corollary 2. Let (X,Σ) be a cardinality-constrained choice environment. Then the

weak axiom characterizes strong rationalizability for any choice correspondence if and

only (i) TΓ = Σ3, and (ii) the budget graph Γ(X,Σ) is chordal.

4.2 Deterministic Rationalizability of Stochastic Choice

There has been recent interest in deterministic notions of rationality that could be

ascribed to models of stochastic choice. Let X be a finite set, and Σ a not-necessarily-

complete collection of budgets. In this context, we take as primitive a collection of

probability distributions P(·, B), for each B ∈ Σ, corresponding to the observed fre-

quency with which a given alternative is chosen when an agent is presented with choice

set B.

Ok and Tserenjigmid (2019) put forward two choice correspondences arising from

such stochastic data. The ‘upper’ choice correspondence associated with P maps a

budget to those alternatives in it that are observed to be chosen with positive proba-

bility:

CP(B) = {x ∈ B : P(x,B) > 0}.
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The ‘lower’ correspondence returns only those alternatives that are chosen with maxi-

mal frequency:

CP(B) = {x ∈ B : ∀y ∈ B, P(x,B) ≥ P(y,B)}.

The authors term P completely upper (resp. lower) rational if CP (resp. CP) is strongly

rationalizable by a preference relation and obsesrve that, when Σ is complete, these

rationality properties are characterized by CP and CP satisfying the weak axiom. The-

orem 1 provides an immediate extension of these results to any well-covered budget

collection, allowing considerable latitude by extending the results to experiments with

less-than-complete domains. This is particularly valuable in the stochastic context,

as to obtain reasonable empirical estimates of P, one must sample each budget in Σ

repeatedly. As such, reductions in the required breadth of Σ may lead to considerable

savings in terms of the observational requirements of the theory.

4.3 Aggregation of Incomplete Preferences

Consider a set of national policies X, and let I be a set of agents. Given a subset of

A ⊆ X, let P(A) denote the set of all preference relations on A. For each agent i, a

regional preference is a relation %i ∈ P(Si) for some fixed Si ⊆ X. We interpret this

as capturing that agents care only about policies affecting their particular region, or

perhaps those neighboring regions. We term the tuple (X, (Si)i∈I) a society. A social

welfare function, for a given society, is simply a map F :
∏

iP(Si)→ P(X).

We say a social welfare function F satisfies the Pareto axiom if, whenever all agents

who have preferences between two policies x and y agree on their relative ranking, this

ranking is preserved by F . Notably, unlike in the case of complete preferences, the

incompleteness of preferences may well lead to the set of Pareto social welfare functions

being empty. When agents have preferences over only subset(s) of policies, it may be

the case that every aggregation mechanism is forced to disregard the preferences of

some populations, even when their views are unopposed. Moreover, this may be true
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even for profiles of (incomplete) preferences containing no disagagreement of any kind.

A social welfare function is said to satisfy the strong unanimity axiom if, when-

ever there is no disagreement over any pair of policies by any pair of agents, the social

welfare function respects the preferences of the agents. Formally, F satisfies strong

unanimity if, whenever for all i, j ∈ I it is the case that %i |Si∩Sj = %j |Si∩Sj , then

F (%1, . . . ,%N) is an order extension of ∪i %i. Strong unanimity is far weaker condition

on F than satisfying the Pareto axiom; indeed it requires the Pareto axiom to hold

only for special case of unanimous profiles. Nonetheless, the regional nature of the

preferences may lead to the set of social welfare functions that satisfy even just strong

unanimity being empty. Theorem 2 provides a complete characterization of those so-

cieties for which the set of social welfare functions that satisfy strong unanimity is

non-empty.

Let S be a society. In this setting, define the domain associated with S as the

triple D(S) = (X,ES, TS), where ES (resp. TS) are those pairs (resp. triples) of

distinct policies belonging to some common Si. We interpret this as follows: to each

agent i, suppose we solicit their pairwise preferences on each binary choice set within

Si. Since we may restrict to profiles that are unanimous, there is agreement over

Si ∩ Sj for all pairs of agents, and since each agent i is rational over Si, the union

of the revealed preference relations is precisely a locally rational binary relation on

our domain. Thus Theorem 2 implies that if (X,ES) is chordal, there is always some

weak order extending the union of these preferences, and we may always define the

value of a social welfare function F at such a profile to be one of these extensions.

Conversely, if (X,ES) is not chordal, Theorem 2 guarantees a profile of unanimous

regional preferences admitting no extending weak order, precluding the existence of

any F satisfying the strong unanimity axiom for such a society.

Corollary 3. Let S = (X, (Si)i∈I) be a society. The set of social welfare functions for

S satisfying the strong unanimity axiom is non-empty if and only if D(S) is simple.
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Proofs

Lemma. Let (X,Σ) be a choice environment and let γ be a loop in Γ(X,Σ). Then

there exists choice function c ∈ W(X,Σ) such that %c |Eγ is a cycle if and only if there

exists a cyclic collection Bγ and choice function c̃ ∈ W(X,Σ|Bγ ) such that %c̃ |Eγ is a

cycle.

Proof. (=⇒): Suppose there exists a c ∈ W(X,Σ) such that %c |Eγ is a cycle. Then

there exists some cyclic collection Bγ with the property that the choices inducing %c |Eγ
are all made on elements of Bγ. Then the restriction of c to Σ|Bγ must still obey the

weak axiom, and clearly satisfies the conclusion of the lemma.

(⇐=): Suppose now there exists a cyclic collection Bγ and a c̃ ∈ W(X,Σ|Bγ ) such

that %c̃ |Eγ is a cycle. Define an extension of c̃ to all of Σ as follows:

c(B) =

c̃(B) if B ∈ Σ|Bγ

B \
(
∪B̃∈Bγ B̃

)
else.

This defines a choice correspondence in W(X,Σ), for if x %c y for distinct x, y, either

x, y ∈ ∪B̃∈Bγ B̃, in which case there can be no violation of the weak axiom as c̃ is

in W
(
X,Σ|Bγ

)
, or x 6∈ ∪B̃∈Bγ B̃, in which case by construction ¬ y �c x, and thus

c ∈ W(X,Σ).

Lemma. Let (X,Σ) be a choice environment and let γ be a loop in Γ(X,Σ) with

|Vγ| = 3. Then there exists a choice correspondence c ∈ W(X,Σ) with %c |Eγ a cycle

if and only if there exists a cyclic collection Bγ that is not covered.

Proof. (⇐=): Suppose that Bγ is an uncovered cyclic collection for γ of minimal car-

dinality. Let us denote Eγ = {e0, e1, e2}. Then, in particular, for every ej ∈ Eγ, there
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is a unique Bj ∈ Bγ with ej ⊆ Bj. Define c̃ ∈ C(X,Σ|Bγ ) via:

c̃(B) =


ej ∩ ej+1 if ∃ ej ∈ Eγ s.t. B ∩ Vγ = ej

B ∩ Vγ if |B ∩ Vγ| = 1

B else.

where all subscripts are taken mod-3. Note c̃ is well-defined, as Bγ is uncovered from

which it follows the first two cases exhaust the possibilities for budgets in Σ|Bγ that

intersect Vγ. Moreover, c̃ ∈ W(X,Σ|Bγ ). First, observe the restriction of the pair (%c̃

,�c̃)|Eγ satisfies the weak axiom. But the only alternatives c̃ reveals strictly preferred

to any others all lie in Vγ, and the only goods ever revealed preferred to elements of Vγ

also lie in Vγ. Hence c̃ ∈ W
(
X,B ∈ Σ|Bγ

)
, and by Lemma 1 there exists a c ∈ W(X,Σ)

such that %c |Eγ is cyclic.

(=⇒): Let c ∈ W(X,Σ) be such that %c |Eγ is cyclic. Then there exists a cyclic collec-

tion Bγ on which choices generating the cycle %c |Eγ are made; fix such a collection. We

now show that this cyclic collection must be uncovered, lest there exist some B ∈ Σ|Bγ
such that Vγ ⊆ B. Suppose, for sake of contradiction, that such a B exists.

Case 1: Suppose first that c(B) ∩ Vγ 6= ∅. Then either c(B) induces complete in-

difference across Vγ, or there exists some pair of elements of Vγ that is either strictly

preferred to, or strictly dominated by the third element. Both possibilities preclude

the existence of the cycle %c |Eγ for any c ∈ W(X,Σ).

Case 2: Suppose then that c(B) ∩ Vγ = ∅: then for all x ∈ Vγ and y ∈ c(B) we have

y �c x. But c(B) ⊂ B ⊆ ∪B̃∈Bγ B̃, and since for all x ∈ Vγ there exists some B̃ such

that x ∈ c(B̃), there exists an x̃ ∈ Vγ and B̃ ∈ Bγ such that x̃, y ∈ B̃ and x̃ ∈ c(B̃).

This contradicts our hypothesis that c ∈ W(X,Σ).

Lemma. Let (X,Σ) be a choice environment and let γ be a loop in Γ(X,Σ) with

|Vγ| > 3. Suppose there exists a choice correspondence c ∈ W(X,Σ) with %c |Eγ a

cycle. If every cyclic collection Bγ is covered, then there exists a loop γ′ in Γ(X,Σ)
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such that |V ′γ | < |Vγ| and with %c |Eγ′ a cycle.

Proof. Let Bγ be a minimal cyclic collection on which choices inducing %c |Eγ are made,

and suppose Bγ is covered. Then there exists some B ∈ Σ|Bγ such that B contains a

non-adjacent pair of vertices of γ. We proceed in two cases.

Case 1: Suppose first that c(B) does not intersect Vγ. Let xk, xk′ ∈ B∩Vγ be one such

non-adjacent pair of vertices, and let y ∈ c(B). As c(B) ⊆ B ⊆ ∪B̃∈Bγ B̃, and Bγ is a

minimal cyclic collection on which choices inducing the cycle %c |Eγ are made, there is

some B̃k∗ ∈ Bγ containing y, such that there is some xk∗ ∈ c(B̃k∗) ∩ Vγ. Without loss

of generality, let xk′ %c · · · %c xk∗ %c · · · %c xk. In particular, by our hypothesis that c

obeys the weak axiom, we cannot have xk∗ = xk (or xk′).
18 As c(B) does not contain

any element of Vγ by hypothesis, but xk′ ∈ B, we have y �c xk′ , and, as xk∗ , y ∈ B̃k∗ ,

it follows xk∗ %c y. Thus: y �c xk′ %c · · ·xk∗ %c y. Define γ′ to be the graph with

Vγ′ given by the above collection of points, and Eγ′ consisting of those pairs related in

the above cycle (clearly as there is a non-empty revealed preference for each pair this

forms a loop in Γ(X,Σ)). By construction, %c |Eγ′ is a cycle. Now, since xk∗ 6= xk,

xk 6∈ Vγ′ . Moreover, since xk and xk′ are non-adjacent in γ, under %c |Eγ we also have:

xk %c · · · %c x̄ %c · · · %c xk′ along the ‘other side’ of the loop. Thus we also have that

x̄ 6∈ Vγ′ . So while we have added a point y not in Vγ to our Vγ′ , we have omitted at

least two others, xk and x̄, and we conclude: |Vγ′ | < |Vγ| as required.

Case 2: Suppose now that c(B) intersects Vγ. As B contains the non-adjacent pair

xk, xk′ ∈ Vγ, the only way that c(B) can avoid revealing a preference between xk and

xk′ is if neither is in but both are adjacent in γ to c(B). Moreover, this argument holds

for every non-adjacent pair of vertices of γ contained in B. Now, if c(B) induces a

revealed preference xi %c xj between any pair of non-adjacent vertices xi, xj ∈ Vγ this

partitions %c |Eγ into two sub-cycles, one of which must always contain a strict relation

(either from %c |Eγ or resulting from a strict revealed preference between xi and xj).

18As y �c xk and y �c xk′ by hypothesis, but xk∗ %c y via choice on Bk∗ .
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Letting γ′ be defined by the vertices and pairs supporting any such sub-cycle suffices

to prove the claim. Thus suppose that c(B) does not induce any revealed preference

between any non-adjacent pair (lest we be done). Thus c(B) is adjacent to both xk

and xk′ (and hence singleton) and c(B) = {x∗} induces both xk ≺c x∗ �c xk′ . But

these three points are all elements of Vγ, hence by virtue of %c |Eγ being a cycle we

have either xk %c x
∗ %c xx′ or the reverse. But both of these yield contradiction via a

violation of the weak axiom, and hence there exists a strictly shorter %c-cycle.

Theorem. Let (X,Σ) be a choice environment. Then W(X,Σ) = G(X,Σ) if and only

if Σ is well-covered.

Proof. (⇐=): For purposes of contraposition, suppose thatW(X,Σ) 6= G(X,Σ). Then

there exists some loop γ in the budget graph Γ(X,Σ) and some choice correspondence

c ∈ W(X,Σ) such that %c |Eγ is a cycle. If |Vγ| = 3, then by Lemma 2, Σ is not

well-covered and we are done. Hence suppose γ is of length strictly greater than three.

Then there exists some cyclic collection Bγ on which choices generating the cycle %c |Eγ
are made. If Bγ is not covered, we are done, hence suppose it is. Then by Lemma 3

there exists a loop γ′ in the budget graph of strictly shorter length such that %c |Eγ′
is also a cycle. As we have already concluded this process cannot repeat until it hits a

three-cycle, we conclude that at some stage, there exists some loop γ(n) for which there

exists a cyclic collection Bγ(n) which is not covered and hence Σ is not well-covered.

(=⇒): We again proceed by contraposition. If a cyclic collection for a budget graph

loop of length 3 is uncovered, by Lemma 2, we immediately obtainW(X,Σ) 6= G(X,Σ).

Suppose then there exists some loop γ with |Vγ| > 3 with a cyclic collection Bγ that

is uncovered (without loss of generality, let Bγ be a minimal such uncovered cyclic

collection) In particular, let Eγ = {e0, . . . , eJ−1}. By virtue of γ being uncovered, for

each ej ∈ Eγ there exists a B̃j ∈ Bγ such that for all j ∈ {0, . . . , J − 1} we have

ej = B̃j ∩ Vγ, and by the minimality of Bγ, these {B̃j} are unique and completely

exhaust Bγ. Furthermore, for all B ∈ Σ|Bγ , B ∩ Vγ necessarily also either equals some
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ej, is singleton, or is empty.19 Thus, letting (subscripts taken mod-J):

c̃(B) =


ej ∩ ej+1 if ∃ ej s.t. ej = B ∩ Vγ

B ∩ Vγ if |B ∩ Vγ| = 1

B else,

we obtain a choice correspondence c ∈ W(X,Σ|Bγ ) by an argument identical to that in

the proof of Lemma 2, only for a longer cycle. Clearly %c̃ |Eγ is cyclic and by Lemma

1 this extends to a choice correspondence in c ∈ W(X,Σ) such that %c |Eγ is cyclic,

and hence W(X,Σ) 6= G(X,Σ). Thus, by contraposition, W(X,Σ) = G(X,Σ) implies

the well-coveredness of Σ.

Corollary. Let (X,≤X) be a lattice, and suppose further that (i) Σ contains only totally

ordered subsets of X, and (ii) every pair of elements of Σ is comparable in the strong

set order. Then Σ is well-covered.

Proof. Let γ denote an arbitrary loop in Γ(X,Σ). By (i) we conclude that every edge

pair of γ is related by ≤X . As ≤X is a partial order and Vγ finite, ≤X |Eγ admits a local

minimum, in the sense of the existence of xi−1, xi, xi+1 ∈ Vγ such that xi <X xi−1, xi+1,

and {xi−1, xi}, {xi, xi+1} ∈ Eγ. Let Bγ be an arbitrary cyclic collection for γ. In light of

(ii), without loss of generality suppose these two edges belong to different budgets in Bγ,

and letBxi−1xi ≤SSO Bxixi+1
for two budgets in Bγ withBxi−1xi containing {xi−1, xi} and

Bxixi+1
containing {xi, xi+1}. Then by the strong set order xi−1 = xi ∨ xi−1 ∈ Bxi+1xi ,

and hence Bxi+1xi covers Bγ. As γ and Bγ were arbitrary, we again conclude that Σ is

well-covered.

Combinatorial Results on Simple Subdomains

We begin by recalling some definitions from the theory of simplicial complexes. A

simplicial complex is a set of vertices {vi}i∈I , and collection of non-empty finite

19The loop γ, viewed as a loop in the subgraph Γ(X,Σ|Bγ ), is what is sometimes referred to as

‘chordless’ in graph theory.
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subsets {sj}j∈J of {vi} called simplices such that:

1. Any set consisting of exactly one vertex is a simplex; and

2. Any non-empty subset of a simplex is a simplex.20

A simplex of cardinality (n+1) is said to be of dimension n. Given a simplicial complex

DT generated by a collection of triangles T , the boundary DT , denoted ḊT , is the sub-

complex of generated by those 1-simplices which are the faces of exactly one triangle

of T . The n-skeleton of a complex K, denoted K(n) is defined as the collection of all

simplices of K of dimension n. We will commit the mild sin of occasionally using K(n)

to denote both the set of n-simplices of K and also the subcomplex generated by these

simplices where no confusion should result.

Theorem (Fundamental Theorem of Simple Sub-domains). Let D be an arbitrary

domain, and l ⊆ D(1) a loop. There exists a simple sub-domain for l if and only if

there exists a simple sub-domain D|T̄ for l that satisfies:

(i) Boundary: Ḋ|T̄ = l; and

(ii) Minimality: The vertex set of D|T̄ equals that of l.

Proof. (⇐=) : Trivial.

(=⇒) : Let T̃ generate a simple sub-domain for l, and consider a chain λ ∈

C1(D|T̃ ,R), given by:

λ =
∑
σ∈l

nσσ,

with (i) zero coefficients on any σ ∈ D|T̃ that does not belong to l, and (ii) and

such that, for all σ ∈ l, the coefficients satisfy |nσ| = 1, where signs are chosen so

λ ∈ ker ∂1.21 As, by topological triviality, H1(D|T̃ ,R) = 0, Im ∂2 = ker ∂1 hence there

20See Spanier (1989) Section 3.1 (p. 108) for basic definitions.
21The apparent indeterminacy of the signs of the coefficients in λ is simply a consequence of our

being ambivalent about the choice basis for C1(D|T̃ ,R).
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exists some chain Λ in C2(D|T̃ ,R) solving:

∂2

[∑
τ∈T̃

nττ︸ ︷︷ ︸
Λ

]
= λ

with some nτ possibly equal to zero. Let T̄ = {τ ∈ T̃ : |nτ | 6= 0} denote the support of

Λ, and suppose for some 2-simplex τ ∈ D|T̄ there is a 1-face σ̂ of τ such that σ̂ ∈ Ḋ|T̄
but σ̂ 6∈ l. Then we immediately obtain a contradiction: it must be the case actually

nτ = 0, since ∂2Λ would have coefficient equal in absolute value to |nτ | on σ̂, as by

definition of a boundary, τ is the only 2-simplex in D|T̄ containing σ̂, and nσ̂ = 0 as

σ̂ 6∈ l. Therefore we conclude Λ is supported on a finite sub-collection T̄ with the

property that Ḋ|T̄ ⊆ l ⊆ D|T̄ .

We claim first that D|T̄ is combinatorially trivial. Suppose for sake of contradiction,

that it fails to be so. Since T̃ was combinatorially trivial and T̄ ⊆ T̃ , there exist a

partition of T̄ into maximal, non-empty collections of 2-faces T̄1, . . . , T̄K , K > 1, such

that for each k, D|T̄k is combinatorially trivial. This in turn implies that for all k,

Ḋ|T̄k 6= ∅, as any ‘leaf’ 2-face contains at least two 1-faces unique to it. Fix an

arbitrary k and let Λ̂ be a 2-chain in C2(D|T̄k ,R) whose coefficients are are all 1 in

absolute value, with signs chosen so that ∂2Λ̂ vanishes on any 1-face not in Ḋ|T̄k . Then

by construction,

∂2Λ̂ =
∑

σ∈Ḋ|T̄k

n̂σσ

and for all such σ, |n̂σ| = 1. By identity, (∂1 ◦ ∂2)(Λ̂) = 0, and thus for each vertex

x ∈ Ḋ|(0)

T̄k
6= ∅, x is contained in an even number of 1-faces in Ḋ|T̄k , and hence Ḋ|T̄k

consists of a union of loops. But as Ḋ|T̄k̂ ( Ḋ|T̄ ⊆ l, we obtain a contradiction, as no

proper subcomplex of a loop may be a loop. Thus D|T̄ is itself combinatorially trivial.

We now verify that Ḋ|T̄ = l. Recall we have already obtained that Ḋ|T̄ ⊆ l ⊆ D|T̄ .

Suppose then, for sake of contradiction, that there exists some 1-face σ ∈ l, such that
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σ 6∈ Ḋ|T̄ . Let τ ∈ D|T̄ denote one of the two 2-faces (combinatorial triviality) of

D|T̄ that contains σ, and let K denote the sub-complex of D|T̄ generated by those

2-faces of D|T̄ that may be reached from τ by a sequence of distinct 2-simplices with

adjacent terms sharing a common face, but whose intersections do not contain σ. By

construction K is combinatorially trivial; by an argument analogous to that of the

preceding paragraph, K̇ is a non-empty union of loops. But K̇ ( Ḋ|T̄ ∪{σ} ⊆ l, where

the first strict inclusion follows from the fact that the complement of K in D|T̄ is a

non-empty combinatorially trivial subcomplex too. Hence we obtain a contradiction,

again because l cannot contain any proper sub-complex that is also a loop, and thus

Ḋ|T̄ = l as claimed.

We turn to verifying our minimality claim, that the vertex sets of D|T̄ and l coincide:

D|(0)

T̄
= l(0). Let G denote the undirected graph whose vertex set is given by the 2-

faces of D|T̄ and whose edge set determined by the relation of having an intersection

containing a 1-face. By combinatorial triviality of D|T̄ , G is a tree. Now, suppose

toward a contradiction that the vertex sets of D|T̄ and l do not coincide. Since Ḋ|T̄ = l,

this implies there is some vertex x of D|T̄ not in l. Now, as D|T̄ is combinatorially

trivial, every 1-face σ of D|T̄ that contains x is contained in precisely two 2-simplices.

Let G̃ be the subgraph of G consisting of those 2-faces containing x as a vertex. Since

each vertex τ of G̃ contains precisely two 1-faces that contain x, by finiteness G̃ is a

cycle graph, contradicting the fact that G is a tree (i.e. that D|T̄ is combinatorially

trivial). Hence the vertex sets of D|T̄ and l coincide.

Finally, we show the dimension-1 simplicial homology of D|T̄ is zero in real coeffi-

cients, our last outstanding claim. As D|T̄ is combinatorially trivial, its collection of

1-faces may be partitioned into two subsets: those faces in Ḋ|T̄ and those not. By

definition, the edge-set of the graph G introduced in the preceding paragraph is in

one-to-one correspondence with the the set of 1-faces of D|T̄ not in Ḋ|T̄ . By combi-

natorial triviality, G is a tree and hence has one more vertex (2-simplex of D|T̄ ) than

edge (1-face of D|T̄ not in Ḋ|T̄ ). Similarly, l = Ḋ|T̄ is a loop, so the number of 1-faces
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must be the same as the number of vertices of l, which we have established is also the

vertex set of D|T̄ . The Euler-Poincaré theorem (Munkres (1984) Theorem 22.2) asserts

the equivalence of the following two definitions of the Euler characteristic of D|T̄ :

χ(D|T̄ ) = dimH0(D|T̄ ,R)− dimH1(D|T̄ ,R) + dimH2(D|T̄ ,R) = V − E + F,

where V is the number of 0-simplices, E the number of 1-simplices, and F the number

of 2-simplices in D|T̄ . By the above counting argument for the set of 1-faces of D|T̄ ,

we know:

E = V︸︷︷︸
1-faces in Ḋ|T̄ .

+ F − 1︸ ︷︷ ︸
1-faces in D|T̄ \ Ḋ|T̄ .

(1)

and hence χ(D|T̄ ) = 1. Now, since every 2-simplex in D|T̄ intersects l, D|T̄ is path-

connected and hence dimH0(D|T̄ ,R) = 1. Moreover, by combinatorial triviality,

H2(D|T̄ ,R) = 0.22 Then by Euler-Poincaré, dimH1(D|T̄ ,R) = 0, and thus D|T̄ is

a simple sub-domain as claimed.

Lemma (Union Lemma). Let D|T ,D|T ′ be two simple sub-domains whose intersection

consists of a single 1-face σ. Then D|T ∪ D|T ′ is a simple sub-domain.

Proof. As D|T and D|T ′ are combinatorially trivial, it is immediate that so too is

D|T ∪D|T ′ . Then, by the reduced simplicial Mayer-Vietoris theorem (Munkres (1984)

22Since D|T̄ is homengeously 2-dimensional it contains no simplices of dimension greater than two,

hence H2(D|T̄ ,R) = 0 if and only if the only solution to:

∂2

[ ∑
τ∈D|(2)

T̄

ñττ

]
= 0

is for ñτ = 0 for all τ ∈ D|(2)

T̄
. Clearly for any solution, any τ ∈ D|T̄ which contains a 1-face in Ḋ|T̄

must have have ñτ = 0 by (PM.2). Hence in any non-zero solution to the above, the sub-collection

of 2-simplices in D|T̄ with non-zero coefficients must have the property that all of their 1-faces are

contained also in some other (hence unique other) member of the sub-collection. But this sub-collection

defines a subgraph of the graph G, and the above property implies again that this subgraph can have

no leaves, contradicting the fact G is a tree, as D|T̄ is combinatorially trivial. Hence H2(D|T̄ ,R) = 0.
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Theorem 25.1) there exists an exact sequence:

0→ H̃1(D|T ∩D|T ′ ,R)→ H̃1(D|T ,R)⊕H̃1(D|T ′ ,R)→ H̃1(D|T ∪D|T ′ ,R)→ H̃0(D|T ∩D|T ′ ,R)

which, making use of topological triviality of D|T and D|T ′ and the contractibility of

D|T ∩ D|T ′ (i.e. = σ), reduces to:

0→ (0)→ (0)⊕ (0)→ H̃1(D|T ∪ D|T ′ ,R)→ 0

and hence H̃1(D|T ∪ D|T ′ ,R) = 0, and equivalently H1(D|T ∪ D|T ′ ,R) by definition of

reduced simplicial homology.

We now turn to the proof of Theorem 3 in the text.

Theorem. Let (X,Σ) be a choice environment. Then the domain D(X,Σ) is simple

if and only if the budget graph is chordal.

Proof. (=⇒): Suppose the domain is simple, and let γ be a loop. By simplicity of

the domain, there exists some simple subdomain containing γ. By the Fundamental

Theorem of Simple Subdomains, there exists a collection of triangles T̃ such that the

edge-set of the subdomain generated by T̃ consists either of edges of γ or bisections

of γ. If |Eγ| = 3 then there is nothing to check thus suppose |Eγ| > 3. Then by

combinatorial triviality, there exists at least one element of Ẽ that does not belong to

Eγ, and thus γ has a chord. Since γ was arbitrary, we conclude Γ(X,Σ) is chordal.

(⇐=): To prove the domain associated to any chordal budget graph is simple, we

proceed by contraposition. Suppose, then, that D(X,Σ) is not simple. Then, as there

exists a loop contained in no simple sub-domain, there exists a shortest such loop,

which we will denote γ, with Eγ =
{
{x0, x1}, . . . , {xn−1, xn}, {xn, x0}

}
. We know |Vγ|

must be strictly greater than three, lest Vγ be a triple in D and hence this triple serve

trivially as a simple sub-domain containing γ. We now prove that for all e ∈ EΓ,

e ⊆ Vγ if and only if e ∈ Eγ, that is, that γ is a chordless loop in Γ(X,Σ). Clearly

Eγ ⊆ EΓ. Thus, for sake of contradiction, suppose there exists an e ∈ EΓ with e ⊆ Vγ
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but e 6∈ Eγ. Then without loss of generality, e = {xj, xk} with k > j + 1. Hence we

obtain two loops, γ1 and γ2 via:

Eγ1 =
{
{x0, x1}, . . . , {xj−1, xj}, {xj, xk}, {xk, xk+1}, . . . , {xn, x0}

}
and

Eγ2 =
{
{xj, xj+1}, . . . , {xk−1, xk}, {xk, xj}

}
,

both shorter than γ. By the minimality of γ, there exist simple sub-domains D|T̃1
and

D|T̃2
of D(X,Σ) for γ1 and γ2 respectively, and by the fundamental theorem of simple

sub-domains, these complexes may be taken to intersect only on the 1-face {xj, xk}.

But by the union lemma, D|T̃1
∪ D|T̃2

is a simple sub-domain for γ, a contradiction.

Thus γ is chordless, and hence Γ is not chordal.

Finally, we conclude with the (counter-)example mentioned in the text.

Example 14. LetX = {x0, . . . , x4}, and let Σ = EΓ =
{
{x0, x1}, {x1, x2}, {x2, x3}, {x3, x4},

{x4, x0}, {x1, x3}, {x3, x0}, {x0, x2}, {x2, x4}, {x4, x1}
}

. Note the domain associated to

this environment corresponds to a triangulation of the Möbius strip. Let γ correspond

to the boundary of the strip, i.e. the loop with edge set Eγ =
{
{x1, x3}, {x3, x0}, {x0, x2}, {x2, x4}, {x4, x1}

}
.

As X = Vγ, clearly every edge in EΓ consists of either an edge of Eγ or a bisecting

edge, and it is simple to verify that every vertex belongs to some bisecting edge of γ.

Finally, there is only one subdomain containing γ, the entire domain itself, and this

is neither combinatorially trivial (its ‘sharing a common face graph is a circle graph

on five vertices) nor topologically trivial (the homology group of the Möbius strip in

dimension one with R-coefficients is R).

Integrability Results

Given a simplicial complex K, a (discrete) n-form is a linear functional acting on

oriented pieces of the n-dimensional skeleton K(n).23 Define the space of all n-forms

23We intentionally adopt the analyst’s terminology of ‘forms’ rather than the topologist’s ‘cochain’

to further highlight the parallel to the exterior calculus arguments underpinning the solution to the
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on K as:

Cn(K) =
{
φ : K(n) → R : φ([xσ(0), . . . , xσ(n)]) = sign(σ)φ([x0, . . . , xn])

}
,

where [x0, . . . , xn] denotes an oriented n-simplex of K and σ is any permutation of

{0, . . . , n}. In particular, the vector space C0(K) consists precisely of all real valued

functions on the vertices; C1(K) may be interpreted as the space of all real-valued

flows on the 1-skeleton of K, where the permutation condition simply ensures that

these flows are directed .

The gradient and curl operators are defined analogously as in the text. A 1-form F

is said to be exact (or ‘integrable’) if there exists an f ∈ C0(K) such that grad(f) =

F . Similarly, if rot(F ) = 0, F is said to be closed. An exact 1-form is always

closed; this may be succinctly stated as Im(grad) ⊆ Ker(rot). In particular, this

implies the quotient vector space Ker(rot)/ Im(grad) is well-defined. This quotient is

denoted H1(K,R) and is known as the first simplicial cohomology group of K (with

R-coefficients); its dimension may be interpreted as a measure of how far the closedness

of a 1-form is from guaranteeing its exactness, or integrability.

Proposition. Let c ∈ C(X,Σ). Then c is locally rationalizable if and only if c both:

(i) obeys the weak axiom; and

(ii) is ordinally irrotational.

Proof. (=⇒): Suppose c is locally rationalizable. Then � and its asymmetric compo-

nent � form a suitable order pair extension to verify ordinal irrotationality. Moreover,

c must obey the weak axiom for all those pairs of alternatives that are contained in

some triangle of the budget graph. Thus we need only to verify that c does not violate

the weak axiom for those pairs of distinct alternatives x, y which form edges not be-

longing to any triangle. But if {x, y} ∈ EΓ and {x, y} is not contained in any triangle,

classical integrability problem. See Jiang et al. (2011) and Grady and Polimeni (2010) for an in-depth

discussion of the parallels between the smooth and discrete theories.
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then {x, y} ∈ Σ and this must be the only budget containing both these alternatives,

precluding any possible violation of the weak axiom over them.

(⇐=): Suppose now c is ordinally irrotational and satisfies the weak axiom. Let

(�,�∗) denote the order extension of the revealed preference guaranteed by ordinal

irrotationality. In particular, the asymmetric component � of � is a sub-relation of

�∗, i.e. �⊆�∗. If �=�∗, then % is a local rationalization, thus it suffices to establish

that one may always take �∗ to be the asymmetric component of �.

Let Z = {(x, y) ∈ X × X : x �∗ y, y � x, and x � y} denote those pairs for

which x �∗ y but ¬x � y (recall that while �∗ contains �, by the definition of an

order pair, �∗⊆�). We partition Z into two subsets: Z0 = {(x, y) ∈ Z : y %c x} and

Z1 = {(x, y) ∈ Z : ¬ y %c x}. Consider first those pairs in Z0. If (x, y) ∈ Z0 then

x �∗ y, x � y, y � x, and y %c x. As c satisfies the weak axiom, it cannot be the

case that x �c y. Moreover, it cannot be the case that y �c x, as �∗ contains �c and

x �∗ y already, and �∗ is asymmetric by hypothesis. Thus it must be that y %c x

and x %c y. In other words, both (x, y) and (y, x) are required to belong to �, but we

may omit (x, y) from �∗ without problem: (�,�∗ \{(x, y)}) is still complete restricted

to each triangle as (x, y) ∈ �, and of course if (�,�∗) had no triangular cycles then

neither could (�,�∗ \{(x, y)}). More generally, (�,�∗ \Z0) is complete restricted to

each triangle in the budget graph, has no triangular cycles, and �⊆�∗ \Z0.

Consider now Z1. If x �∗ y, x � y, y � x, but ¬y %c x, then there is no reason to

include (y, x) in�. As�∗ is asymmetric, we know (y, x) does not belong to�∗ (as (x, y)

does by hypothesis). Moreover, its removal from � cannot affect the completeness of

the order pair restricted to each triangle, nor can it create triangular cycles where none

previously were. Hence starting from (�,�∗), we may instead consider the order pair

(� \Z1x,�∗ \Z0), which has the property that the asymmetric part of � \Z1 is �∗ Z0,

and thus forms a local rationalization for c.

Henceforth we fix a choice environment (X,Σ), and will suppress the argument
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(X,Σ) appearing in domains. Let � be a binary relation on X that is locally rational.24

Let γ be a loop in D, and D|T̃ a simple sub-domain of D containing γ. A 1-form

F ∈ C1(D|T̃ ) is a cardinalization of � on D|T̃ if, for all 1-faces of D|T̃ :

y � x =⇒ F ([x, y]) ≥ 0,

and

y � x =⇒ F ([x, y]) > 0.

Lemma. (Closed Cardinalization Lemma) Let � be locally rational, and let D|T̃ ⊆ D

be a simple sub-domain. Then there exists a closed cardinalization of � on D|T̃ .

Proof. Let {τ̃1, . . . , τ̃I} be an enumeration of those 2-simplices of D|T̃ that each contain

at least two distinct 1-faces in Ḋ|T̃ . Using this, we construct an enumeration of all 2-

simplices of K as follows: between each τ̃i, τ̃i+1 insert the unique (via combinatorial

triviality) ordered sequence of 2-simplices in D|T̃ connecting them, omitting any 2-

simplices of D|T̃ that have appeared in the construction prior. Let {τ1, . . . , τJ} denote

this enumeration, and let D|j
T̃

denote the sub-complex of D|T̃ generated by the first j

elements of this enumeration.

We now inductively construct our closed cardinalization of �. First, note that there

is trivially a closed cardinalization of � on D|1
T̃

: � restricted to the vertices of τ1 is

complete and transitive by local rationality, hence admits a utility function u1 on these

vertices. Let F1 ∈ C1(D|1
T̃

) be defined as grad(u1). For our inductive step, suppose now

that there is a closed cardinalization Fj ∈ C1(D|j
T̃

) of � on D|j
T̃

, for some j < J . By

analogous logic, there is a utility function uj+1 representing � restricted to the vertices

of τj+1. Let F̃j+1 = grad(uj+1) be the closed 1-form on the the complex generated

by τj+1 alone. By virtue of the structure of the enumeration constructed above, τj+1

and τj intersect on exactly a single 1-face, σ with vertex set {a, b}. There exists some

c ∈ R++ such that Fj([a, b]) = cF̃j+1([a, b]), with c unique if � is strict over this pair.

24That is, for all T ∈ TΓ, � |T is complete and transitive.
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Then define:

Fj+1([x, y]) =

Fj([x, y]) if [x, y] 6⊂ τj+1

cF̃j+1([x, y]) if [x, y] ⊂ τj+1,

completing the proof.

Theorem (Ordinal Integrability Theorem). Let (X,Σ) be a choice environment with

D(X,Σ) a simple domain. Then a choice correspondence c ∈ C(X,Σ) is strongly

rationalizable if and only if:

(i) It obeys the weak axiom; and

(ii) It is locally rationalizable.

Moreover, (i) and (ii) are jointly equivalent to the strong rationalizability of c if and

only if D(X,Σ) is simple.

Proof. We begin first by verifying (i) and (ii) are equivalent to strong rationalizability

for simple D. Clearly, strong rationalizability always implies (i) and (ii), regardless of

the structure of D: any rationalizing weak order �c of course is a local rationalization

and implies (%c,�c) obeys the weak axiom.

Now, suppose D is simple, and let c ∈ W(X,Σ) be locally rationalizable. Let γ ⊆ D

be an arbitrary loop. We will show that %c |Eγ cannot be cyclic. As γ is a loop, by

simplicity of D there exists a simple sub-domain D|T̃ ⊆ D containing γ, and � a local

rationalization of %c on D|T̃ . By the preceding lemma there exists a closed cardinaliza-

tion of � on D|T̃ , which we will denote by F ∈ C1(D|T̃ ). By the cohomology universal

coefficient theorem (see Munkres (1984) Theorem 53.1), there exists an isomorphism

between H1(D|T̃ ,R) and H1(D|T̃ ,R) (see Munkres (1984) Corollary 53.6 or Jiang et

al. (2011) Theorem 4), and hence as D|T̃ is topologically trivial, H1(D|T̃ ,R) = 0, and

therefore there exists an f ∈ C0(D|T̃ ) such that grad(f) = F . Define the binary rela-

tion ≥∗ on the vertex set D|(0)

T̃
via x0 ≥∗ x1 ⇐⇒ f(x0) ≥ f(x1) (resp. strict). This is

a weak order on the vertices of D|T̃ which, by consistency of F , is an extension of �
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on D|T̃ .25 Thus %c |Eγ is acyclic. As γ was arbitrary, and every potential cycle of %c

must be supported on some loop in D, each contained in some simple sub-domain, we

conclude %c is acyclic. Thus, for all c ∈ W(X,Σ), if c is also locally rationalizable, it

must satisfy the generalized axiom and hence is strongly rationalizable.

We now show that if D is not simple, (i) and (ii) do not imply strong rationaliz-

ability. Suppose, then, that D is not simple. By Theorem 3 there exists a chordless

loop in the budget graph Γ(X,Σ), which we will denote γ. Thus, there exists a cyclic

collection for γ, denoted Bγ = {B1, . . . , Bn} ⊆ Σ such that for all 0 ≤ j ≤ n we have

{xj, xj+1} ⊆ Bj, and that this collection is uncovered: as |Vγ| > 3 and γ is chordless,

no budget in all of Σ contains any pair of non-adjacent points in γ. For all B ∈ Σ|Bγ ,

let:

c̃(B) =


ej ∩ ej+1 if ∃ ej s.t. ej = B ∩ Vγ

B ∩ Vγ if |B ∩ Vγ| = 1

B else,

and for all B ∈ Σ define:

c(B) =

c̃(B) if B ∈ Σ|Bγ

B \ (∪B̃∈Bγ B̃) else.

By an argument analogous to that in the proof of Theorem 1, c ∈ W(X,Σ) and not

G(X,Σ).

We now verify that c is nonetheless locally rationalizable. To do this, we will

explicitly construct a local rationalization �. First, for all e ∈ Eγ, let xi ≺ xi+1. Thus

for all pairs {x, y} ∈ Eγ, x � y if and only if x �c y. For all e ∈ EΓ \Eγ that intersect

Vγ, we have shown this intersection must be singleton. For all such e, we know e is of the

form {a, xi} for some xi ∈ Vγ. For all pairs {a, xi} with a ∈ (∪B̃∈Bγ B̃), define a ≺ xi,

and if a 6∈ (∪B̃∈Bγ B̃), let a � xi. Finally, for those pairs {a, b} that do not intersect

25It is generally an extension of � (which itself extends the revealed preference %c) as ≥∗ is complete

and thus generally relates vertices not connected by any edge in D|(1)

T̃
.
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Vγ, we consider two cases. If, either {a, b} ⊆ (∪B̃∈Bγ B̃) or {a, b} ⊆ X \ (∪B̃∈Bγ B̃),

then let a � b and b � a. If exactly exactly one element (without loss a) of {a, b} is

contained in (∪B̃∈Bγ B̃), then let b � a. Finally, let �∗ denote the reflexive closure of

�. Then �∗⊇%c, and, by construction, �∗ is locally rational. This follows from (i)

for all {a, b} ∈ EΓ, either a �∗ b or b �∗ a, and (ii) for every T ∈ TΓ, T only contains

at most one pair in γ, as γ is chordless and of length greater than three. Thus, in

particular, if T contains an edge of γ, denoted {x, y}, it contains some element z such

that either z �∗ x, y or x, y �∗ z. If T contains no edges of γ, then �∗ |T is clearly

complete and transitive, and hence �∗ is locally rational.

Application Theorems

Proposition. Let (X,Σ) be a cardinality-constrained choice environment. Then every

c ∈ W(X,Σ) is locally rationalizable if and only if TΓ = Σ3.

Proof. (⇐=): If TΓ = Σ3, consider the revealed preference of any choice function c

obeying the weak axiom. If, for any pair {x, y} contained in some T ∈ TΓ, we have

neither x %c y nor y %c x, it means that for every T ′ ∈ TΓ = Σ3, it is the case that

that neither x nor y are chosen, hence c(T ′) = T ′ \ {x, y}. Note that, for any T ∈ Σ3,

at most one pair of elements may not have any preference revealed between them, as T

is a budget itself so some choice must occur on it. Thus adding both (x, y) and (y, x)

to %c for every such %c-unrelated pair {x, y} yields a locally rational extension.

(=⇒): We proceed by contraposition. Suppose TΓ 6= Σ3. Of course Σ3 ⊆ TΓ,

hence there exists some {x, y, z} ∈ TΓ that is not a budget itself, but every pair of

elements in it is contained in some budget. It is immediate then, due to the cardinality

constraints on Σ, that {x, y}, {y, z}, {z, x} is a loop in Γ(X,Σ) that possesses an uncov-

ered cyclic collection. By Lemma 2 we obtain the existence of a choice correspondence

obeying the weak axiom whose revealed preference exhibits a three-cycle on this loop.

Since the vertex set of this loop is in TΓ, this choice correspondence cannot be locally
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rationalizable.

Corollary. Let (X,Σ) be a cardinality-constrained choice environment. Then the weak

axiom characterizes strong rationalizability for any choice correspondence if and only

(i) TΓ = Σ3, and (ii) the domain D(X,Σ) is simple.

Proof. (=⇒): Suppose W(X,Σ) = G(X,Σ). Then by Theorems 1 and 2, D(X,Σ) is

simple and every choice correspondence in W(X,Σ) is locally rationalizable. By the

preceding proposition, it follows then that TΓ = Σ3.

(⇐=): Suppose TΓ = Σ3 and D(X,Σ) is simple, and let γ ⊆ Γ(X,Σ) be an arbitrary

loop. Then there exists some sub-collection T̃ of three-good budgets that generate a

simple sub-domain containing γ. By the fundamental theorem of simple subdomains,

we may take this simple sub-domain’s edge set to consist solely of edges of γ and

bisections of γ. But, by combinatorial triviality, there exists a ‘leaf’ triangle in this

sub-domain, hence for this triangle there exists a pair of edges {x, y}, {y, z} ∈ Eγ such

that {x, y, z} ∈ Σ3. This implies that every cyclic collection for γ is covered, and by

the arbitrariness of γ, Σ is well-covered. Theorem 1 then completes the proof.
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