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Introduction

I For sufficiently rich choice/demand data sets, possible
inconsistencies with preference maximization are characterized
by simple pairwise, or local consistency conditions.

I This paper is concerned with what constitutes a ‘rich enough’
collection of observations for such results, independent of the
specific choices observed.



Abstract Choice I

A choice environment is a pair (X ,Σ), where:

I X is a set of alternatives.

I Σ ⊆ 2X \ {∅} is a collection of non-empty subsets of X called
budgets.

These budgets correspond to the subsets of X from which we
observe the agent choose.

I Assumptions on Σ are assumptions on observability.



Abstract Choice II

A choice correspondence is a map c : Σ→ 2X \ {∅} satisfying:

(∀B ∈ Σ) c(B) ⊆ B.

The revealed preference pair associated to c , denoted (%c ,�c),
is defined via:

I x %c y if there exists a budget B ∈ Σ such that {x , y} ∈ B,
and x ∈ c(B).

I x �c y if there exists a budget B ∈ Σ such that {x , y} ∈ B,
x ∈ c(B), and y 6∈ c(B).



Rationalizable Choice

A choice correspondence c is strongly rationalizable if there
exists a weak order � on X such that:

(∀B ∈ Σ) c(B) =
{
x ∈ B : ∀y ∈ B, x � y

}



The -ARPs

I A choice correspondence satisfies the weak axiom of revealed
preference (WARP) if it makes no choice reversals:

x %c y =⇒ y 6�c x .

I It satisfies the generalized axiom of revealed preference
(GARP) if it contains no finite choice cycles of the form:

x0 %c x1 %c · · · %c xN−1 �c x0.



The Budget Graph

For a choice problem (X ,Σ) its budget graph Γ is the undirected
graph with vertex set VΓ = X and edge set:

EΓ =

{
{x , y} ⊆ X : ∃B ∈ Σ s.t. {x , y} ⊆ B

}
.



An Example
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(b) The budget graph.

Figure: A choice environment with five alternatives and three budgets.



Cyclic Collections

For a loop γ = (Vγ ,Eγ), a collection of budgets Bγ ⊆ Σ is a cyclic
collection for γ if:

(∀e ∈ Eγ) (∃B ∈ Bγ) e ⊆ B.

A cyclic collection Bγ for a loop γ is covered if there exists a
budget B̄ ⊆ ∪B̃∈Bγ B̃ that either:

(i) Contains Vγ ; or

(ii) Contains a pair of elements of Vγ that are not connected by
an edge in Eγ .

Note: Condition (i) implies (ii) if and only if |Vγ | > 3.



Propagation of Choice Cycles

A loop γ has the propagation property if every choice
correspondence that chooses cyclically around γ necessarily makes
another choice cycle elsewhere in the data.

Theorem

A loop in the budget graph has the propagation property if and
only if all of its cyclic collections are covered.



Well-covered Budget Collections

A budget collection Σ is well-covered if, for every loop γ in its
budget graph, every cyclic collection for γ is covered.

Theorem

Let (X ,Σ) be a choice environment. The weak axiom of revealed
preference is characteristic of strong rationalizability if and only if
Σ is well-covered.



Discussion

I Well-coveredness characterizes when choice cycles imply
choice reversals.

I This occurs only when every loop in the budget graph has the
propagation property.



Economic Interpretation of Well-coveredness

I Can we express the idea of well-coveredness in terms of more
familiar economic ideas?

I Hurwicz, Uzawa et al. tell us a (nice) demand arises from
constrained-optimal choice according to a (nice) utility if and
only if its Slutsky matrix is:

I Negative semi-definite ⇐⇒ weak axiom; and

I Symmetric ⇐⇒ locally integrable.

I Complete domain: we know x for every (p,w).



Domains

Let (X ,Σ) a be a choice environment with budget graph
Γ = (X ,EΓ).

I The domain associated to the choice problem is the triple
(X ,EΓ,TΓ) where:

TΓ =
{
{x , y , z} ⊆ X : {x , y}, {y , z}, {x , z} ∈ EΓ

}
.

I Given some finite collection T̃ ⊆ TΓ, the subdomain
generated by T̃ is the collection of 1-, 2-, and 3-element
subsets of elements of T̃ .



Local Rationalizability

A choice correspondence is locally rationalizable if there exists an
order extension (�,�) of (%c ,�c) such that:

(∀τ ∈ TΓ) � |τ is complete and transitive.



Simple (Sub)domains

A (sub)domain (X̃ , Ẽ , T̃ ) is simple if it is:

(i) Combinatorially Trivial: If for all τ, τ ′ ∈ T̃ there is a unique,
finite sequence of distinct elements of T̃ :

τ = τ0, τ1, . . . , τk = τ ′

such that τj and τj+1 share precisely a pair of elements.

(ii) Topologically Trivial: The (sub)domain has a first Betti
number of zero.

By abuse of notation, we say a domain is simple if every loop in Γ
is contained in a simple subdomain.



The Triviality Conditions
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(a) A domain that is
topologically trivial but not
combinatorially trivial.
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(b) A domain that is
combinatorially trivial but not
topologically non-trivial.

Figure: An illustration of the (sub)-domain triviality conditions. Neither
domain is simple (i.e. both combinatorially and topologically trivial).



Local versus Strong Rationalizability I
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Figure: A cyclic binary relation (blue) on two non-simple domains. Does there
exist a locally rational extension?



Local versus Strong Rationalizability II
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Figure: On non-simple (sub)-domains, locally rational binary relations may not
be acyclic.



Ordinal Integrability

Theorem

I. Let (X ,Σ) be a choice environment with a simple domain.
Then a choice correspondence is strongly rationalizable if and
only if:

(i) It obeys the weak axiom; and
(ii) It is locally rationalizable.

II. Moreover, (i) and (ii) are equivalent to strong rationalizability
if and only if the domain of (X ,Σ) is simple.



Well-coveredness Revisted

We obtain a decomposition of well-coveredness as: (i) the two
classical integrability conditions coincide, and (ii) the choice
environment is ‘complete enough.’

Theorem

Let (X ,Σ) be a choice environment. Then Σ is well-covered if and
only if both:

I If a choice correspondence obeys the weak axiom, then is
locally rationalizable; and

I The domain for (X ,Σ) is simple.



Application: Inconsistency Indices

I When (X ,Σ) is rich, choice cycles can propagate.

I This means not all choice cycles should necessarily be treated
independently. Some may be ‘explainable’ by others.

I Measures of irrationality should account for the structure of
the environment.



Generators for Cycles

I Suppose for some finite (X ,Σ) we fix a choice correspondence
c . Let Z denote the set of all choice cycles in the data.

I Given a cycle z of length three or more, any collection of
budgets Gz ⊆ Σ which generate the choice cycle z form a
cyclic collection for the loop supporting z .

I We can speak of the budgets that cover the cyclic collection
Gz .



A Dependence Relation

I For two choice cycles z , z ′ ∈ Z, we say z induces z ′, denoted
z → z ′, if there exist generators for the cycles Gz ,Gz ′ ⊆ Σ
such that:

Gz ′ ⊆ Gz ∪ {B ∈ Σ : B covers Gz}.

I Given only those choices made on budgets in Gz , every choice
on a cover for Gz necessarily forces another cycle. We
shouldn’t deem any induced cycles as representative of a
deeper degree of irrationality.



The Irrational Kernel

Consider the transitive closure of → on Z, denoted →∗. We call a
collection I ⊆ Z an irrational kernel for the data if:

(i) For all z ′ ∈ Z there exists an z ∈ I such that:

z →∗ z ′.

(ii) I is minimal amongst all such collections of cycles.



Inconsistency Indices

I The size of any irrational kernel gives an integer-valued
measure of how many ‘independent’ cycles are in a data set.

I Particularly, it accounts for how the structure of the
environment affects the number of cycles.

I Generally, data will be richer than just the abstract choice
framework. This extra data should of course be used. But any
reasonable inconsistency index should be increasing in the size
of the irrational kernel.



Conclusions

I The manner in which the structure of the choice environment
affects and constrains the possible revealed preference data is
not well understood.

I We characterize how the environment may cause cycles in
choice data to induce other cycles elsewhere in the data.

I This property turns out to be intimately related to the richness
condition characterizing when the weak and generalized
axioms coincide, as well as to understanding when analogues
of classical integrability theory obtain under incomplete data.

I These results also yield a simple manner to appropriately
‘count’ GARP violations in data for experimentalists.



Thank you!

Any Questions?
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