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Abstract

Cycles in revealed preference data are often regarded as fundamen-

tal units of choice-theoretic inconsistency. Contrary to this, we show

that in nearly any environment, cyclic choices over some menus neces-

sarily force further cyclic choices elsewhere. In many cases, the entirety

of a subject’s inconsistency can be explained by only a handful of cy-

cles. We characterize such dependencies, and show that every set of

‘independent’ cycles capable of explaining all others is necessarily of

the same size. This quantity provides a simple, transparent measure

of irrationality that accounts for the dependencies introduced by the

structure of the choice environment or experiment.

1 Introduction

The hypothesis that agents are rational is perhaps the most ubiquitous and

widely adopted assumption in all of economics. The testable implications of
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rationality have long since been characterized by the revealed preference liter-

ature (Samuelson 1938; Houthakker 1950; Richter 1966; Afriat 1967): a sub-

ject’s choices or decisions are consistent with the maximization of a preference

relation if, and only if, no choice cycles are observed in their behavior.

Despite the clarity and elegance of these results, they are binary in nature:

behavior is either precisely consistent with the rational paradigm, or it is not.

As a consequence, in many practical settings, the data often fail to pass such

an exact test.1 Thus instead, what is needed are means of quantifying the

severity, or magnitude, of observed deviations from rationality.

This paper provides a principled, transparent method of quantifying the

degree of irrationality observed in any choice data set. Our measure is rooted

in the basic observation that choice cycles rarely occur in isolation. Often,

once a subject has chosen cyclically from some collection of menus, there will

be other menus on which every possible choice necessarily generates further

cycles. We take the position that such ‘forced’ or ‘knock-on’ cycles are not

indicative of any deeper degree of irrationality than what would be implied by

observing only the initial, ‘forcing’ cycles alone.

The following example illustrates how the structure of a choice environ-

ment, or experiment, can lead to cyclic choices over certain menus forcing

subsequent choices to always create additional cycles.

Example 1. Consider four alternatives {a, b, c, d}, and suppose an individual

is presented with choices between {a, b}, {b, c}, {c, d}, and {d, a}. If this

individual were to choose a from {a, b}, b from {b, c} and so forth cyclically,

their choice behavior would be inconsistent with preference maximization, as

it contains a revealed preference cycle.

Suppose now the agent is additionally presented with the opportunity to

choose from the menu {a, b, c}. Their cyclic choices from the initial, binary

1For example, Harbaugh et al. (2001) find that 23 out of 31 second graders, 16 out of

42 sixth graders, and 19 out of 55 college undergraduates exhibited at least one cycle over

choices between simple menus of juice and chips. In more a more complex setting, Echenique

et al. (2011) find that 396 out of 494 individuals exhibit at least one choice cycle.
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Figure 1: Given the subject’s cyclic choices from the binary menus {a, b}, {b, c}, {c, d}, and
{a, d}, every possible choice from {a, b, c} creates at least one additional, knock-on cycle.

menus forces them to necessarily create another choice cycle now, regardless

of their selection. If a is not chosen exclusively as the most-preferred alterna-

tive from {a, b, c}, a pairwise reversal obtains relative to their earlier choices.2

Conversely, if a is indeed uniquely chosen from this new menu, then a is re-

vealed preferable to c, creating a different, new cycle, this time between a, c,

and d; see Figure 1. ■

In this example, the structure of the set of menus ensured that any cycle

of choices over all four alternatives could never occur in isolation: any such

cycle necessarily forced at least one other elsewhere, when choices from the

tripleton menu are accounted for. In such cases, we interpret the forcing cycle

as justifying, or explaining, the presence of the forced cycle.

To define our measure, we consider collections of mutually-independent

cycles (i.e. which do not explain each other) but which nonetheless explain, in

this manner, all others. We term such sets of cycles ‘irrationality kernels’ for

2For example, if b belongs to the subject’s choice set from this menu, then b is revealed

weakly preferred to a, while a was earlier revealed to be strictly preferred to b, creating a

cycle of length two.
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the data. In general, many kernels will exist for a given data set. We show,

however, that any two always contain precisely the same number of cycles.

We define the our index, the inconsistency rank, to be the size of any such

collection.

As illustrated in Example 1, the structure of the collection of menus may

lead to non-trivial dependencies between cycles. Left unaccounted for, these

dependencies lead many existing indices to ‘double count’ the effect of cycles,

by mistakenly treating knock-on effects as evidence of further irrationality.3

In contrast, the inconsistency rank measures the number of distinct, inde-

pendent choice cycles needed to fully account for the entirety of a subject’s

non-rationalizable behavior. Since no two elements of any kernel can be used

to explain each other, our index does not ‘double count’ cycles. Conversely,

because every observed cycle can be explained by (at least) one cycle in any

kernel, we ensure that our index reflects the entirety of a subject’s inconsis-

tency.

As a consequence, the inconsistency rank provides a cardinal measure of

irrationality: it is meaningful to say, for example, that the inconsistency in

one subject’s choices requires twice as many independent cycles to explain as

another’s. Moreover, it is valid to compare the inconsistency rank of two choice

correspondences defined across domains. Normally, when making comparisons

between choices over different sets of menus, there is the possibility that one

domain may present a more exacting test. Frequently, this is because of the

potential for more cycles to emerge from fewer inconsistent choices on one

domain than another. The advantage of the inconsistency rank is that it

normalizes precisely for this influence of the domain’s structure on the set

of observed cycles, allowing us to compare volumes of observed evidence of

irrationality, in absolute terms.

In Section 3 we define our model; throughout, we consider the abstract

3For in-depth discussion of how the inconsistency rank relates to other well-known indices,

see Section 5.2.
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choice framework of Richter (1966).4 In Section 4 we characterize how the

structure of the choice domain leads cyclic choices over some alternatives to

sometimes force further cycles to emerge. We use this characterization in

Section 5 to define the inconsistency rank. Finally, in Section 6 we examine

extremal domains, on which either every (or no) choice cycle forces others. We

show the former class characterizes those domains on which the ‘fundamental

theorem of revealed preference’ (e.g. Ok et al. 2015) remains valid, while the

latter class is suitably degenerate. We interpret this as providing evidence that

in most practical experiments, forced cycles are likely to emerge.

2 Related Literature

There is an extensive literature on inconsistency measurement for revealed

preference data; Dziewulski et al. (2024) is an excellent recent survey. Lanier

and Quah (2024) study the incompatibility of several natural axioms such an

index might obey; Mononen (2020) axiomatizes several classical measures in

the setting of price-consumption data.

This paper is most closely related to work seeking to quantify irrational-

ity for general choice data environments. Most recently, Ribeiro (2024) has

proposed a partial ordering over choice correspondences, where one data set is

more rational than another if it is consistent on any sub-collection of menus

on which the other is. Other classic contributions include Houtman and Maks

(1985), who propose using as an index the size of any minimal set of obser-

vations which, when dropped, render the remaining observations consistent.

In practice, the number of choice cycles, or number of observations belonging

to some choice cycle, are also commonly employed measures (e.g. Famulari

1995; Harbaugh et al. 2001). Kalai et al. (2002) propose using the minimal

number of preference relations needed to rationalize every observed choice;

Apesteguia and Ballester (2015) propose a measure related to the minimal

4While we allow for set-valued choice, our primary results remain equally valid when

only choice functions are observed.
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number of binary swaps needed to transform the revealed preference relation

into a preference. We postpone a more in-depth comparative discussion of

these indices to Section 5.2.

There is also an extensive literature on measuring inconsistency in the spe-

cialized setting of price-consumption data. Afriat (1973) proposes the so-called

‘critical cost efficiency’ index (cf. Varian 1990).5 More recent contributions

include Echenique et al. (2011) (see also Lanier et al. 2024) who propose using

the money pump as a means of quantifying inconsistency. Dean and Mar-

tin (2016) propose measuring the minimum cost needed to break all revealed

preference cycles.

Finally, various notions of ‘loss’ relative to consistency have been implicitly

used in recent work. Chambers et al. (2021) design a statistical estimator for

a subject’s (noisily observed) preferences minimizing the Kemeny distance to

the observed data. Caradonna (2024) constructs a least-squares estimator for

preferences from cardinal data on preference intensity.

3 Preliminaries

Let X be an arbitrary set of alternatives from which an agent chooses. A

preference relation is a complete and transitive binary relation on X. Let

Σ ⊆ 2X \{∅} be a collection of budgets, reflecting which menus an empiricist

is able to observe choice from. When Σ contains all budgets of cardinality

greater than one, we say that it is complete. We refer to the tuple (X,Σ)

as a choice environment, and interpret any such environment as abstractly

defining an experiment.

For any subset A ⊆ X, we define the restriction of Σ to A as those elements

of Σ wholly contained in A:

Σ|A =
{
B ∈ Σ : B ⊆ A

}
,

5See Echenique (2021) for a discussion of the interpretation of this index.
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and for a non-empty collection of subsets A ⊆ 2X , it will be convenient to

define the shorthand:

Σ|A =

{
B ∈ Σ : B ⊆

⋃
A∈A

A

}
.

A mapping c : Σ → 2X \ {∅} is a choice correspondence if, for all

B ∈ Σ, it satisfies c(B) ⊆ B. Let C(X,Σ) denote the collection of all choice

correspondences for the environment (X,Σ), and Cf (X,Σ) the sub-collection of

choice functions (i.e. singleton-valued choice correspondences). Given a choice

correspondence c ∈ C(X,Σ), a preference relation ⪰ on X rationalizes c if:6

(∀B ∈ Σ) c(B) =
{
x ∈ B : ∀ y ∈ B, x ⪰ y

}
.

Given a c ∈ C(X,Σ), its revealed preference pair (≿c,≻c) is defined via: x ≿c y

if there exists some B ∈ Σ such that x, y ∈ B and x ∈ c(B), and x ≻c y if

there exists some B ∈ Σ such that x, y ∈ B, x ∈ c(B) and y ̸∈ c(B).

A choice correspondence c ∈ C(X,Σ) satisfies the weak axiom of revealed

preference if it contains no pairwise reversals: x ≿c y implies y ̸≻c x. We say

c obeys the generalized axiom of revealed preference if (≿c,≻c) contains no

cycles:

x0 ≿c x1 ≿c · · · ≿c xN ≻c x0,

where x0, . . . , xN are distinct. A choice correspondence is rationalizable if, and

only if, it satisfies the generalized axiom, i.e. it contains no choice cycles; see

Richter (1966).

3.1 The Budget Graph

For any choice environment (X,Σ), let Γ(X,Σ) denote the undirected graph

whose vertex set VΓ = X, and whose edge set EΓ is given by the relation of

6A choice function is rationalizable by a preference relation if and only if it is rational-

izable by a strict preference, thus our definition of rationalizability coincides with the usual

notion when c is a choice function.
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(a) A choice environment with five

alternatives and three budget sets.
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(b) The budget graph associated

with this environment.

Figure 2: A choice environment and its corresponding budget graph. The coloring of the

edges in the budget graph indicates which budgets are responsible for the edge’s inclusion

in the graph.

two vertices belonging to some common budget:

{x, y} = exy ∈ EΓ ⇐⇒ ∃B ∈ Σ s.t. {x, y} ⊆ B.

We term Γ(X,Σ) = (VΓ, EΓ) the budget graph.

A loop in Γ is a connected, finite subgraph γ = (Vγ, Eγ) such that every

vertex in Vγ belongs to precisely two edges in Eγ. Suppose that:

x0 ≿c x1 ≿c · · · ≿c xN ≻c x0 (1)

is a cycle in (≿c,≻c). We refer to the subgraph with vertices {x0, . . . , xN} and

edges {x0, x1}, . . . , {xN , x0} as the support of the cycle (1). The support of

a cycle is a loop if and only if it does not correspond to a WARP violation.7

Let:

Zc =
{
(Ṽ , Ẽ) ⊆ Γ(X,Σ) : (Ṽ , Ẽ) is the support of a cycle in (≿c,≻c)

}
.

We refer to Zc as the cycle set of c; in doing so, we are implicitly identifying

cycles with their support. Let:

ZW
c =

{
(Ṽ , Ẽ) ⊆ Zc : (Ṽ , Ẽ) is the support of a WARP violation

}
denote the subset of Zc that are (supports of) WARP violations.

7If we have a WARP violation x0 ≿c x1 ≻c x0, then this support is simply the subgraph

(Ṽ , Ẽ) with Ṽ = {x0, x1} and Ẽ =
{
{x0, x1}

}
. This is not, however, a loop.
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4 Dependencies Between Cycles

Informally, we say that a cycle forces others when, given some collection of

choices yielding it, every possible combination of other choices from the re-

maining budgets in Σ necessarily creates other cycles.

This was precisely the case in Example 1: there, once the cycle of length

four was chosen, every choice the subject could make from the remaining bud-

get created (at least) one other cycle. The main result of this section is The-

orem 1, which characterizes precisely how this behavior arises, in completely

general environments.

4.1 Cyclic Collections and Covers

Let z ∈ Zc \ ZW
c . A collection of budgets Bz ⊆ Σ is a cyclic collection for

z = (Vz, Ez) if, for every e ∈ Ez, there exists a B ∈ Bz with e ⊆ B. Similarly,

if z ∈ ZW
c , we say Bz ⊆ Σ is a cyclic collection if it contains two distinct

budgets B,B′ that both contain the unique edge in Ez.

Given a cycle z ∈ Zc \ ZW
c and cyclic collection Bz, we say that Bz is

covered if either:

(i) There exists a B̄ ∈ Σ|Bz such that Vγ ⊆ B̄; or

(ii) There exists a B̄ ∈ Σ|Bz such that B̄ contains a pair of elements of Vγ

that are not connected by any edge in Ez.
8

We refer to such a B̄ ∈ Σ as a cover.9 For a cycle z ∈ ZW
c , we define every

cyclic collection to be uncovered.

Finally, we say a cyclic collection Gz is a generator for the cycle z ∈ Zc

if z is also a cycle of the choice correspondence restricted to Gz, but not of

8Note that condition (i) implies (ii) if and only if |Vγ | > 3.
9Recall the restricted collection Σ|Bz

is defined as:

Σ|Bz
=

{
B ∈ Σ : B ⊆

⋃
B̂∈Bz

B̂

}
,
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any proper sub-collection. Note that the same collection of menus may be a

generator for multiple cycles, and may be covered when regarded as a generator

for one cycle, but not another.10

4.2 A Characterization of Forcing

Our first result provides a complete characterization, in terms of the structure

of Σ, of when a cycle z with generator Gz forces other cycles elsewhere in the

data.

Theorem 1. Let c ∈ C(X,Σ) be a choice correspondence with cycle z and

associated generator Gz. Then the following are equivalent:

(i) Gz is covered; and

(ii) Every choice correspondence c′ ∈ C(X,Σ) which contains z as a cycle,

and Gz as a generator for z, also contains at least one other cycle.

Moreover, this equivalence remains valid when c and c′ are restricted to be

choice functions.

Theorem 1 shows that when a cycle is generated by choices on some collection

of budgets, it forces others if and only if the choice environment contains

some budget covering the collection. This was precisely the stucture present

in Example 1. There, the cycle of length four had, as a generator, the four

binary menus. The tripleton budget covered this generator, and hence by

Theorem 1, every choice from this menu necessarily created further cycles.

As a corollary, we also obtain the following ‘ex-ante’ characterization of

forcing, describing which loops in the budget graph can support cycles which

do not force others.

10For example, suppose c
(
{x0, x1}

)
= {x0} and c

(
{x0, x1, x2}

)
= {x0, x1, x2}. There are

two cycles, a WARP violation z supported on {x0, x1} and a cycle of length three, z′, on

{x0, x1, x2}. The pair of these menus forms a generator for both z and z′, but is uncovered

as a generator for z, while covered as a generator for z′.
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Corollary 1. Let γ be a loop in Γ(X,Σ). Then the following are equivalent:

(i) Every c ∈ C(X,Σ) containing a cycle supported on γ contains at least

one other cycle; and

(ii) Every cyclic collection for γ is covered.

Moreover, this equivalence remains valid when c is restricted to be a choice

function.

5 Measurement of Inconsistency

In this section, we turn to the problem of quantifying the magnitude of any

observed inconsistency in choice data. The premise of our approach is that,

when choice cycles have forced others, the forced cycles should not be treated

as evidence of any deeper degree of irrationality than what would implied by

observation of only the forcing cycles themselves. Instead, we interpret forced

cycles as artifacts arising from the structure of the experiment.

5.1 The Inconsistency Rank

Consider a choice correspondence c ∈ C(X,Σ), with cycle set Zc. Given z, z′ ∈
Zc, we say that z explains z′ (denoted z =⇒ z′) if there exist generators Gz′

for z′ and Gz for z such that, for each B ∈ Gz′ , either:

(i) B also belongs to Gz; or

(ii) B covers Gz.

A cycle z explains a cycle z′ if, given some set of choices generating z, z′ is

generated by choices that were either (i) already involved in z, or (ii) made

on budgets on which any choice would have created new cycles, given those

generating z.
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To motivate this choice of terminology, suppose that z =⇒ z′. In light of

Theorem 1, had we observed only those choices directly involved in generat-

ing z, there are two possibilities. The first is that some collection of choices

generating z also generate z′.11 In this case, it is natural to conclude that z′

is a direct consequence of the manner in which the choices making up z were

made.

The second possibility is that z′ itself is not generated solely by some sub-

collection of Gz, the choices making up z, but also involves choices made on

budgets covering Gz. By Theorem 1, given z, every choice on such a budget

necessarily introduces further cycles. Thus while a priori the existence of the

specific cycle z′ may not have been a foregone conclusion, ex post we may still

regard it as a particular realization of the extra cycle(s) forced by the presence

of z, and the structure of the choice environment itself.

Denote the transitive closure of =⇒ by =⇒∗. If z =⇒∗ z′ then we say z

indirectly explains z′; if two cycles are =⇒∗-unrelated, we call them inde-

pendent. Define a subset of cycles I ⊆ Zc to be an irrationality kernel for

the choice correspondence c if it satisfies:

(IK.1) Independence: For every pair of distinct cycles z, z′ ∈ I, z and z′ are

=⇒∗-unrelated.12

(IK.2) Explanatory Power: For every z′ ∈ Zc, there exists some z ∈ I such

that z =⇒∗ z′.

An irrationality kernel is simply a subset of Zc with the property that no two

cycles in it (even indirectly) explain each other, but which nonetheless together

explain the entirety of the observed inconsistency, Zc.
13

11For example, if X = {x0, x1, x2} and Σ =
{
{x0, x1}, X

}
, define c

(
{x0, x1}

)
= {x1} and

c(X) = X. Let z denote the cycle x1 ≻c x0 ≿c x1, and z′ the cycle x1 ≻c x0 ≿c x2 ≿c x1.

If one observes the choices generating z, here z′ is also directly observed, as Σ itself is a

generator for each cycle.
12Note that every z ∈ Zc explains itself, i.e. the relation =⇒ is reflexive.
13Similar ideas have been studied in the context of cooperative game theory, e.g. the

notion of a ‘stable set’ in Von Neumann and Morgenstern (1944).
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x0

x2 x1

Figure 3: The revealed preference pair for Example 2. We plot ≻c in cyan, ≿c \ ≻c in

orange. There are four choice cycles, three of which are WARP violations.

When |Σ| < ∞, irrationality kernels exist and are finite, for all choice corre-

spondences in C(X,Σ). In general, there will be many irrationality kernels for

a given data set; however, our next result shows that, for any correspondence,

every irrationality kernel contains precisely the same number of elements.

Theorem 2. Let (X,Σ) be a choice environment, with |Σ| < ∞. Then for

every c ∈ C(X,Σ) there exists at least one irrationality kernel. Moreover, for

any two kernels I, I ′ ⊆ Z:

|I| = |I ′| < ∞.

In light of Theorem 2, we may associate to any such choice correspon-

dence a well-defined number: the size of any its irrationality kernel(s); we

term this quantity the inconsistency rank of the correspondence. It reflects

the magnitude of the observed deviations from rationality, normalized for the

dependencies between elements of Zc arising from the structure of Σ.

Example 2. Suppose X = {x0, x1, x2} and Σ is the complete domain, consist-

ing of all subsets ofX of cardinality two or more. Consider the correspondence:

c(B) =


{x1} if B = {x0, x1}

B if B = X

{x2} else.
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There are four revealed preference cycles: three WARP violations, each sup-

ported on the sets {xi, xi+1}, where i is understood mod-three, and one cycle

of length three; see Figure 3. Let zi denote the WARP violation supported on

{xi, xi+1}, and let z denote three-cycle. For each zi, there is a unique genera-

tor Gi =
{
{xi, xi+1}, X

}
. Moreover, the three generators Gi are precisely the

possible generators for z.14 Thus z ⇐⇒ zi for all i, but each pair zi and zj

are =⇒-related if and only if i = j. But this means every pair of cycles are

⇐⇒∗-related, hence any singleton set of cycles forms an irrationality kernel,

and the inconsistency rank is one. ■

Irrationality kernels may be interpreted as a form of generalized ‘basis’ for

the set of cycles, Zc. The requirement (IK.1) that all cycles in I be suitably

unrelated is akin to requiring a set of vectors be linearly independent, while

(IK.2) requires that, in this abstract sense, the cycles in I span all of Zc.
15

Theorem 2 then establishes that every such ‘basis’ for Zc is of the same size.

The inconsistency rank admits a straightforward interpretation: it is the

minimum number of choice cycles needed to fully justify, or explain, the en-

tirety of a subject’s inconsistency. If each choice cycle is regarded as equally

indicative of irrationality, the inconsistency rank simply tallies the minimum

number of strikes against the hypothesis of rationality needed to justify their

observed deviations.16

14Note any generator for z must include at least one budget of the form {xi, xi+1} and

X itself. Given these, any other budgets would be redundant; choices on these two already

yield the three-cycle hence any other budgets would violate the minimality requirement for

generators.
15Note, however, that while every irrationality kernel is a maximal, independent set of

cycles, not every such set is an irrationality kernel, nor are all such sets the same size. In

Example 6, the choice correspondence c has a set of five WARP violations, all of which are

pairwise independent, but an inconsistency rank of one.
16In practice, there may be reasons to assess certain cycles as being more or less severe

than others, beyond their abstract choice-theoretic descriptions (e.g. Echenique et al. 2011;

Lanier et al. 2024). In contexts where there exists some natural choice of scoring function

quantifying the severity of individual cycles, our approach may be straightforwardly adapted

by instead looking for a choice of irrationality kernel that minimizes the sum of the scores

of the cycles it contains, and instead using this minimized sum as an index.
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In light of this, the inconsistency rank may be regarded as a cardinal mea-

sure of inconsistency. It is meaningful to say, e.g., that given two choice corre-

spondences, one requires twice as many cycles as another to explain away all

the observed inconsistency. Indeed, such comparisons remain valid even across

differing domains. Generally, different choice domains will affect the patterns

of dependencies, and hence explanatory relations, between cycles differentially.

However, the advantage of the inconsistency rank is that it normalizes for pre-

cisely these differences in explanatory relations, yielding a measurement in

absolute terms.

5.2 Relation to Other Measures

In this section, we show the inconsistency rank is not a monotone transforma-

tion of any existing index. We consider a number of well-known measures of

inconsistency and show, by means of example, that in various circumstances,

each yields the opposite ranking of the relative consistency of two choice cor-

respondences than the inconsistency rank.

5.2.1 Counting Cycles

Perhaps the most straightforward inconsistency index is to simply count the

number of choice cycles observed in the data (this is discussed, e.g., in Har-

baugh et al. 2001). We define the cycle count index via:

iCC(c) = |Zc|.

While natural, the cycle count treats all cycles independently; as a conse-

quence, whenever there are non-trivial relations between cycles, iCC ‘double-

counts’ the forcing cycles.

Example 3. Suppose X = {x0, . . . , x4} and Σ consists of the budgets:

{x0, x1}, . . . , {x4, x0}, and {x0, x2, x3}.

15



x1

x0

x4

x3 x2

(a) The revealed preference pair for

c. There are 7 cycles in Zc, one of

which is a WARP violation.

x1

x0

x4

x3 x2

(b) The revealed preference pair for

c′. There are 4 cycles in Zc′ , one of

which is a WARP violation.

Figure 4: The revealed preference pairs for Example 3. The relations in ≿c \ ≻c (resp.

≿c′ \≻c′) are plotted in orange, and those in ≻c (resp. ≻c′) are plotted in cyan.

Consider the following choice correspondences:

c(B) =

{xi} if B = {xi, xi+1}

{x0, x2, x3} if B = {x0, x2, x3},

and

c′(B) =

{xi, xi+1} if B = {xi, xi+1}

{x2} if B = {x0, x2, x3},

where i is understood mod-five. The first correpsondence, c, has seven cycles:

one supported on each loop of the budget graph, plus one WARP violation;

see Figure 4. Hence iCC(c) = 7. On the other hand, iCC(c
′) = 4. Thus, the

cycle count index ranks c as exhibiting a deeper degree of irrationality than c′.

However, note that for c, the cycle of length five explains every other,

yielding an inconsistency rank iIR(c) = 1, whereas for c′, we have iIR(c
′) = 2.

Thus when we account for the effects of the structure of Σ on the set of choice

cycles, we obtain a reversal relative to näively counting cycles. ■
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5.2.2 Choices-In-Cycles

Another natural approach to quantifying inconsistency is to count the number

(resp. fraction) of choices involved in patterns inconsistent with rationality

(e.g. Famulari 1995; Swofford and Whitney 1986). In our setting, this amounts

to counting the number, or proportion, of choices which are involved in some

revealed preference cycle. Define the number of choices-in-cycles index iNC

via:

iNC(c) =
∣∣{B ∈ Σ : ∃ z ∈ Zc with generator Gz s.t. B ∈ Gz}

∣∣.
Similarly, define the fraction of choices-in-cycles index, iFC , as:

iFC(c) =
iNC(c)

|Σ|
.

As the following example shows, iNC and iFC penalize longer cycles more

heavily than shorter, whereas the inconsistency rank simply treats all cycles

as equal, leading to divergence in their assessments.17

Example 4. Let X = {x0, x1, x2, y0, y1, y2, z0, . . . , zK}, and Σ consist of the

sets:

{x0, x1}, . . . , {x2, x0}, {y0, y1}, . . . , {y2, y0}, and {z0, z1}, . . . , {zK , z0}.

Define:

c(B) =


{xi} if B = {xi, xi+1}

{yi} if B = {yi, yi+1}

{zk, zk+1} if B = {zk, zk+1},
where i is understood mod-three, and k mod-(K + 1). Then iNC(c) = 6, and

its two cycles are independent, hence iIR(c) = 2. Conversely, define:

c′(B) =


{xi, xi+1} if B = {xi, xi+1}

{yi, yi+1} if B = {yi, yi+1}

{zk} if B = {zk, zk+1}.
17For example, this means that violations due to an accumulation of a large number of

imperceptible differences (e.g. Armstrong 1950; Luce 1956) may be penalized much more

harshly by these indices than outright incoherence of choices across a pair of visibly distin-

guishable alternatives. See also Dziewulski (2020).
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Here, iNC(c
′) = K, all of which appear in its single cycle, hence iIR(c

′) = 1.

Thus for K large enough, the inconsistency rank and choices-in-cycles (both

iNC and iFC) yield opposite comparisons across agents. ■

5.2.3 Houtman-Maks

Houtman and Maks (1985) propose using as an index the minimal number of

choices which, when removed from the data, make the remaining observations

rationalizable. Define the Houtman-Maks index as:

iHM(c) = min
{Σ′ : c|Σ\Σ′ is rationalizable}

∣∣Σ′∣∣. (2)

Example 5. Consider again the environment and choice correspondences

from Example 3. There, iHM(c) = 2 as one must, e.g., remove the bud-

get {x0, x2, x3} and one binary budget to break every cycle. In contrast,

iHM(c′) = 1, as it suffices to remove {x0, x2, x3} alone. However, iIR(c) = 1

and iIR(c
′) = 2, yielding the opposite ranking.

Here, the divergence is driven by the fact that the choice c′
(
{x0, x2, x3}

)
is crucial to two, independent cycles in Zc′ . The Houtman-Maks index views

the marginal contribution of this choice as simply ‘creating inconsistency,’

regardless the form it takes. In contrast, the inconsistency rank penalizes this

choice more severely than it would, say, a choice that led to the formation of

only a single cycle. ■

5.2.4 Multiple Rationales Index

Kalai et al. (2002) consider the minimal number of (strict) preferences needed

to fully explain the entirety of a subject’s choices. More formally, for any choice

function c ∈ Cf (X,Σ), define the multiple rationales index as the minimal size

of any such family:

iMR(c) = min
{∣∣{≻1, . . . ,≻K}

∣∣ : ∀B ∈ Σ, ∃k s.t. c(B) is ≻k-maximal in B
}
.
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The multiple rationales index does, in some instances, implicitly account for

dependencies between cycles.18 However, in general it yields different predic-

tions than the inconsistency rank, as the next example shows.

Example 6. LetX = {x0, . . . , x4}, and Σ consist of the sets {x0, x1}, {x4, x0},
{x0, x1, x2}, {x1, x2, x3}, {x2, x3, x4}, {x3, x4, x0}, and {x4, x0, x1}. Define c

via:

c(B) =

{x0} if B is doubleton

{xi} if B = {xi−1, xi, xi+1},

where i is understood mod-five. Let zi denote the WARP violation supported

on {xi, xi+1}, and consider the cycle z whose support is {x0, x1}, . . . , {x4, x0}.
For each WARP violation, z =⇒ zi, and these are the only non-trivial relations

in =⇒. Thus =⇒∗ and =⇒ coincide, and we obtain that z is the unique

irrationality kernel for the data. Hence iIR(c) = 1.

However, iMR(c) > 2. Clearly c cannot be rationalized by a single pref-

erence; suppose for sake of contradiction that it can be rationalized by two,

≻1 and ≻2. Call an alternative xi a local maximum for a preference ≻ if

xi ≻ xi−1, xi+1. Every preference must have at least one local maxima; sup-

pose without loss that x1 is a local maxima of ≻1. Then ≻1 rationalizes the

choice on {x0, x1, x2}, but cannot rationalize the choice on {x1, x2, x3}, hence
≻2 must. Thus x2 is a local maxima for ≻2, but this means that ≻2 cannot

rationalize the choice on {x2, x3, x4}. Thus ≻1 must, and hence x3 is a local

maxima of ≻1, and by analogous reasoning, x4 is a local maxima of ≻2. How-

ever, this means ≻2 cannot rationalize the choice of x0 from {x4, x0, x1}, nor
can ≻1, as x1 was a local maxima of ≻1 by hypothesis. Hence iMR(c) > 2.

18For example, consider a simple binary-menu environment, a correspondence c possessing

a single forcing and single forced cycle, and c′ containing only one cycle. In this case, both

iMR and iIR rank both c and c′ as equally irrational. This is because on such a domain,

the fact both cycles for c are =⇒∗-related implies both share a common edge, hence iMR

can rationalize all choices for c by introducing a single extra preference, the same as for c′.

In contrast, iIR simply says there is only one relevant cycle for each correspondence.
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x1

x0

x4

x3 x2

(a) The revealed preference pair for

c. There are 6 cycles in Zc, five of

which are WARP violations.

x1

x0

x4

x3 x2

(b) The revealed preference pair for

c′. The only cycles in Zc′ are the two

WARP violations.

Figure 5: The revealed preference pairs for c and c′ in Example 6. Since both c and c′ are

choice functions, all relations are strict.

Conversely, consider the choice function:

c′(B) =


B \ {x0} if B is doubleton

{x0} if B is tripleton and contains x0

B \ {x2, x3} otherwise.

There are two choice cycles in c′, the WARP violations supported on {x4, x0}
and {x0, x1}; see Figure 5. These are independent, hence iIR(c′) = 2. However,

c′ can be rationalized by a two preference family, e.g.:

x0 ≻1 x4 ≻1 x1 ≻1 x3 ≻1 x2

and

x4 ≻2 x1 ≻2 x0 ≻2 x3 ≻2 x2.

Thus iMR and iIR yield opposing conclusions about the relative inconsistency

of c and c′. ■

5.2.5 Swaps Index

Apesteguia and Ballester (2015) propose measuring the inconsistency of a data

set by counting the minimal number of binary ‘swaps’ needed to take the
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best-fitting linear order and render it consistent with the observed choices.19

Formally, let X be finite and LX denote the set of linear orders on X. Then

for any choice function c ∈ Cf (X,Σ), the swaps index is defined as:

iSI(c) = min
▷∈LX

{∑
B∈Σ

∣∣{x ∈ B : x ▷ c(B)}
∣∣}. (3)

The swaps index seeks to find the (strict) preference that minimizes the em-

pirical discrepancy with the data c, measured in terms of pairwise differences.

In contrast, the inconsistency rank seeks to account for the internal structure

of the non-rationalizable aspects of the data, and find a minimal justifying set

of cycles. As the following example shows, these approaches do not always

agree.

Example 7. Let X = {x0, . . . , x5} and Σ consist of the budgets:

{x0, x1}, . . . , {x4, x5}, {x5, x0}, {x0, x1, x4}, and {x1, x3, x4}.

Define the choice functions:

c(B) =


{xi+1} if B = {xi, xi+1}

{x4} if B = {x0, x1, x4}

{x1} if B = {x1, x3, x4},

and

c′(B) =



{xi+1} if B = {xi, xi+1}, i ∈ {1, 2, 3}

{xi} if B = {xi, xi+1}, i ∈ {0, 4, 5}

{x0} if B = {x0, x1, x4}

{x1} if B = {x1, x3, x4},

where i is understood mod-six.

Consider first the choice function c. There are six cycles in Zc: one of

length six, two of length four, two of three, and one of length two, see Figure 6.

19Formally, Apesteguia and Ballester (2015) consider the problem of rationalizing a choice

function by a linear order. This poses no particular difficulty to our framework.
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x1x2

x3

x4 x5

x0

(a) The revealed preference for c.

Here, there are 6 cycles, one of which

is a WARP violation.

x1x2

x3

x4 x5

x0

(b) The revealed preference for c′.

Here, there are four cycles, none of

which are WARP violations.

Figure 6: The revealed preference pairs for c and c′ in Example 7. Since both c and c′ are

choice functions, all relations are strict.

However, the cycle of length six explains every other, hence iIK(c) = 1. In con-

trast, there are four cycles in Zc′ , supported on {x1, x2, x3, x4}, {x0, x1, x4, x5},
{x1, x2, x3}, and {x4, x5, x0} respectively. The only non-trivial =⇒-relations

are that the first of these cycles explains the the third, and the second explains

the fourth. Thus iIK(c) = 2, and hence the inconsistency rank deems c′ as

exhibiting a lesser degree of irrationality than c.

Conversely, the the linear order:

x1 ▷ x0 ▷ x5 ▷ x4 ▷ x3 ▷ x2

is a minimizer (3) for c.20 Relative to this benchmark, c deviates by three

swaps: two from choice on {x0, x1, x4} and one on {x1, x2}, hence iSI(c) = 3.

On the other hand, for c′, the linear order:

x5 ▷
′ x2 ▷

′ x0 ▷
′ x1 ▷

′ x3 ▷
′ x4

20To see this, note that the revealed preference pair contains three cycles, supported on

{x1, x2, x3}, {x1, x4}, and {x4, x5, x0}, which contain no edge in common. Any linear order

must reverse at least one comparison in each of these cycles, hence iSI(c) ≥ 3; this bound

is then attained by ▷.
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x0

x2 x1

(a) The revealed preference pair for

c. There are two choice cycles, both

of which are WARP violations.

x0

x2 x1

(b) The revealed preference pair for

c′. There are two cycles, one of which

is a WARP violation.

Figure 7: The revealed preference pairs for c and c′ in Example 8.

is a minimizer.21 Relative to this, c′ requires only two swaps however: one

{x2, x3} and one on {x4, x5}, and hence iSI(c
′) = 2, yielding a reversal. ■

5.2.6 Rationality Ordering

Ribeiro (2024) proposes an ordinal ranking of choice data, called the ‘rational-

ity ordering.’ A choice correspondence c dominates a correspondence c′ in this

ordering if, for every sub-collection Σ′ ⊆ Σ on which c|Σ′ is not rationalizable,

c′|Σ′ is also not rationalizable.

Example 8. Suppose X = {x0, x1, x2} and Σ =
{
{x0, x1}, {x0, x2}, X

}
. De-

fine:

c(B) =

B \ {x0} if B ̸= X

{x0} if B = X

and

c′(B) =

B if B ̸= {x0, x2}

{x0} if B = {x0, x2}

The correspondence c has two choice cycles, both of which are WARP vio-

lations, supported on {x0, x1} and {x0, x2}. Denote these by z1 and z2 re-

21The revealed preference contains two cycles with disjoint generators (i.e. the cycles

supported on {x1, x2, x3} and {x4, x5, x0}) hence iSI(c
′) ≥ 2. This bound is attained by ▷′.
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spectively. For each zi, there is a unique generator consisting of {x0, xi} and

X. Since {x0, x−i} does not belong to or cover this collection , z1 and z2 are

independent and hence iIK(c) = 2. Note, however, that the restriction of c to

any sub-collection Σ′ ⊆ Σ is rationalizable if and only if Σ′ does not contain

both (i) one doubleton budget, and (ii) X itself.

Similarly, c′ contains two cycles, one WARP violation supported on {x0, x2}
and one cycle of length three. However, the collection consisting of {x0, x2}
and X is a generator for both cycles, and hence iIK(c

′) = 1. Despite this, the

restriction of c′ to some Σ′ ⊆ Σ is rationalizable if and only if Σ′ does not

contain both {x0, x2} and X. Thus c′ is not rationalizable whenever c is not,

but not vice-versa, and we conclude c is more rational than c′ in the rationality

ordering. ■

6 Choice Environments with Special Structure

In this section, we provide descriptions two ‘extremal’ classes of choice environ-

ments. The first are domains on which no non-trivial dependencies can arise

between cycles, for any choice correspondence; we show such environments are

suitably degenerate, suggesting most experiments will feature the possibility

of forced cycles emerging.

The second are domains where no loop in the budget graph is capable of

supporting a cycle which does not force others. We show this richness property

characterizes those domains on which satisfaction of the weak axiom is both

necessary and sufficient for rationalizability.

6.1 Forcing-Free Design

A natural question is to what degree careful experimental design can ensure

that there are no non-trivial forcing relations between cycles, no matter how

choices are made. Such domains considerably simplify the problem of quan-

tifying inconsistency. While environments with this property exist in trivial

cases (e.g. when Σ is singleton) it is unclear how broad this class is.
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Define a choice environment (X,Σ) to be forcing-free if, for all c ∈
C(X,Σ) and any cycles z, z′ ∈ Zc,

z =⇒∗ z′ if and only if z = z′.

In other words, an environment is forcing-free if and only if every choice cycle

is independent of every other, for every correspondence. When this is the

case, Zc is the unique irrationality kernel for any data set, and hence the

inconsistency rank always equals the cycle count, |Zc|. Our next result shows

that, while forcing-free environments do exist, they are ‘degenerate,’ in a sense

we make precise.

Theorem 3. Let (X,Σ) be a choice environment with finite budget graph

Γ(X,Σ). If Σ is forcing-free then, for any loop γ in the budget graph, ev-

ery cyclic collection Bγ consists of either:

(i) A single budget containing the entire vertex set of γ; or

(ii) Consists exclusively of two-element budgets.

Theorem 3 shows that for a given loop in Γ(X,Σ), there are two possibili-

ties: either it is incapable of supporting a choice cycle from any c ∈ C(X,Σ), or

it has a unique cyclic collection, its edge set. In particular, on such domains,

no budget of cardinality ≥ 3 can be involved in any choice cycle.

We interpret Theorem 3 as evidencing that most practical choice experi-

ments will necessarily give rise to the possibility of non-trivial dependencies

arising between cycles. In light of this, we expect the inconsistency rank to

be broadly applicable and, in many cases, to yield different predictions than

existing indices.

6.2 Well-Covered Environments

We now consider the opposite extreme: choice environments where no loop in

the budget graph can support a non-forcing cycle. In light of Corollary 1, call

a choice environment (X,Σ) well-covered if, for every loop γ in the budget
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graph Γ(X,Σ), every cyclic collection Bγ for γ is covered. Well-coveredness

is a completeness, or observational richness, condition on the environment.

In particular, the complete domain consisting of X and all subsets of X of

cardinality ≥ 2 is well-covered.

A well-known property of complete environments is that the weak axiom

of revealed preference is equivalent to the generalized, and hence characterizes

rationalizability (Arrow 1959; Sen 1971). This result is sometimes referred to

as the ‘fundamental theorem of revealed preference’ (e.g. Ok et al. 2015).

Dating back at least to the characterization of rationalizability for general

environments by Richter (1966), it has been an open question to characterize

which incomplete domains remain observationally rich enough for the weak

axiom to remain characteristic.22,23 This turns out to be intimately tied to our

notion of forcing. Our next result shows that well-coveredness is precisely the

minimal observability requirement needed for a ‘strong’ weak axiom.

Theorem 4. Let (X,Σ) be an arbitrary choice environment. The following

are equivalent:

(i) The weak axiom of revealed preference is necessary and sufficient for

strong rationalizability; and

(ii) (X,Σ) is well-covered.

Theorem 4 shows that, on any well-covered domain, testing rationalizability

requires only checking the revealed preference for violations of the weak axiom.

On such a domain, if a choice correspondence satisfies the weak axiom, any

cycle of length greater than two always directly forces a strictly shorter cycle.24

Since repeated application of this logic implies that any choice cycle entails a

22The problem of characterizing which domains the weak axiom implies the generalized

may be viewed as an ordinal analogue of the problem in mechanism design of characterizing

those type spaces on which weak and cyclic monotonicty coincide. See, e.g. Saks and Yu

(2005); Kushnir and Lokutsievskiy (2019).
23For a solution in the case of linear environments, see Cherchye et al. (2018).
24See Lemma 2 and Lemma 3 in the technical appendix.
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WARP violation, we obtain that on well-covered domains, the satisfaction of

the weak axiom is equivalent to the generalized.

This observation may be adapted straightforwardly to characterize those

environments on which a correspondence is rationalizable if and only if it has

no cycles of length less than or equal to some threshold K. Say (X,Σ) is

K-well covered if, for every loop in Γ(X,Σ) of length greater than K, every

cyclic collection is covered.

Corollary 2. Let (X,Σ) be an arbitrary choice environment. Then the fol-

lowing are equivalent:

(i) For every c ∈ C(X,Σ), the correspondence c is rationalizable if and only

if it exhibits no choice cycles of length ≤ K; and

(ii) (X,Σ) is K-well covered.

7 Conclusions

Economic theory seeks to rationalize choice behavior by ascribing to individ-

uals, a preference, whose maximization is consistent with their decisions. In

practice, however, it is frequently the case that observed behavior is inconsis-

tent with every possible preference. As such, it becomes crucial to be able to

empirically assess the significance, or magnitude, of the observed violations.

We present a novel measure of irrationality for choice data, the inconsis-

tency rank. Unlike existing measures, our index is based around the observa-

tion that the structure of a choice environment, or experiment, often leads to

non-trivial dependencies between instances of irrational behavior. Our index

quantifies the number of distinct instances of observed irrationality needed, in

light of this structure, to explain the totality of a subject’s inconsistency.

More generally, we clarify an important dimension of experiment design:

how the structure of the selected menus or choice sets affects (and constrains)

manner in which inconsistent choices can be made. We have shown that even
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in simple settings, choice cycles interact in subtle and non-trivial ways.25 Un-

derstanding when and how these relations arise may additionally help inform

the design of future experiments.
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A Proof Appendix

A.1 Proof of Theorem 1

Proof. (ii) =⇒ (i): Suppose z is a cycle of c, with uncovered generator Gz.

By contraposition, it suffices to exhibit a choice function c′ ∈ Cf (X,Σ) which

also contains z as a cycle, Gz as a generator for z, but which contains no other

cycles.

Denote the revealed preference cycle z via:

x0 ≿c x1 ≿c · · · ≿c xN ≻c x0,

where N ≥ 1. Suppose first N = 1, i.e. z is a WARP violation. Then Gz

consists of two budgets, B1 and B2, both of which contain Vz = {x0, x1}. Let
⊴ denote an arbitrary reverse well-ordering of X \ {x0, x1}.26 Define:

c′(B) =



{x1} if B = B1

{x0} if x0, x1 ∈ B and B ̸= B1

B ∩ {x0, x1} if
∣∣B ∩ {x0, x1}

∣∣ = 1

max⊴(B) if B ∩ {x0, x1} = ∅.

As ⊴ is a reverse well-order, c′ is well-defined and a choice function. By con-

struction, z is a cycle for the restriction of c′ to Gz and hence of the unrestricted

choice function c′ too. Moreover, it is the only cycle of c′: to see this, note

that (i) the only alternatives revealed preferred to x0 (resp. x1) are x1 (resp.

x0), and (ii) the restriction of the revealed preference pair to X \ {x0, x1} is

rationalizable by ⊴. By (ii) any cycle z̃ must then include either x0 or x1, and

by (i) it must be z̃ = z.

Suppose now N > 1. We first define a choice function on Σ|Gz . Let ⊴

26That is, ⊴ is a linear order on X \ {x0, x1} such that every non-empty subset has a

(unique) ⊴-maximal element. Under the axiom of choice, such orderings always exist.
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denote an arbitrary, reverse well-ordering of
(
∪B̂∈Gz

B̂
)
\ Vz. Now, define:

c̃′(B) =


xi if B ∩ Vz = {xi, xi+1} for some i,

B ∩ Vz if |B ∩ Vz| = 1,

max⊴(B) if B ∩ Vz = ∅.

As Gz is a generator for z, every extension of c̄′ to Σ must contain z as a cycle.

Moreover, since Gz is uncovered, these three cases exhaust the possible ways

a budget in Σ|Gz can intersect Vz = {x0, . . . , xN}. Similarly, let ⊴′ denote a

reverse well-ordering of X \
(
∪B̂∈Gz

B̂
)
, and define an extension c′ of c̃′ via:

c′(B) =

max⊴′
(
B \ (∪B̂∈Gz

B̂)
)

if B ̸∈ Σ|Gz ,

c̃′(B) else.

As ⊴ and ⊴′ are reverse well-orders, c′ is clearly well-defined and a choice

function. Now, let:

y0 ≿c′ y1 ≿c′ · · · ≿c′ yM ≻c′ y0,

denote an arbitrary revealed preference cycle of c′.27 First, note that for all

0 ≤ i ≤ M , we must have yi ̸∈ X \
(
∪B̂∈Gz

B̂
)
, as by construction, the only

things that are c′-revealed weakly preferred to elements in this set are other

elements in this set, and restricted to X \
(
∪B̂∈Gz

B̂
)
, the revealed preference

pair for c′ is rationalizable by the linear order ⊴′. Thus for all i, we have

yi ∈
(
∪B̂∈Gz

B̂
)
.

Suppose then that yi ∈
(
∪B̂∈Gz

B̂
)
\Vz. By induction, every yj must belong

to
(
∪B̂∈Gz

B̂
)
\ Vz, as yi ≿c′ yi+1 implies that yi, yi+1 ∈ B where B ∩ Vz = ∅,

and yi ⊵ yi+1. But this is a contradiction, as ⊵ is also a linear order.

Thus we conclude that every yi must belong to Vz. Moreover, each {yi, yi+1} ∈
Ez, as by construction, if yi ≿c′ yi+1, and yi, yi+1 ∈ Vz, then yi, yi+1 ∈ B where

B ∈ Σ|Gz . This means that if {yi, yi+1} ̸∈ Ez, that B would cover Gz, a contra-

diction. Thus every {yi, yi+1} ∈ Ez, and hence, in fact, this cycle is precisely

27At least one such cycle must exist, as z ∈ Zc′ by construction.
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z. Since this cycle was arbitrary, we conclude that c′ possesses precisely one

cycle: z, as desired.

(i) =⇒ (ii): Suppose now that Gz is covered, and that c′ ∈ C(X,Σ) is

arbitrary, other than (i) having cycle z and Gz generating z for c′. Let B ∈ Σ

cover Gz; we consider two cases.

Case: c′(B) ∩ Vz = ∅. Let x∗ ∈ c′(B); since x∗ ∈ B and B covers Gz,

we know x∗ ∈
(
∪B̂∈Gz

B̂
)
and hence that x∗ ∈ B′ for some B′ ∈ Gz. Since

c′(B′) ∩ Vz ̸= ∅ by minimality of the generator Gz, we know that, for some

0 ≤ i, j ≤ N , we have:

x∗ ≻c′ xi ≿c′ · · · ≿c′ xj ≿c′ x
∗,

where xj ∈ c′(B′), and x∗ ≻c′ xi because x∗ ∈ c′(B) and c′(B) ∩ Vz = ∅ by

hypothesis. Since x∗ ̸∈ Vz, this cycle must necessarily be distinct from z.

Case: c′(B) ∩ Vz ̸= ∅. Let xi ∈ c′(B) ∩ Vz. If xj ∈ B ∩ Vz, where

{xi, xj} ̸∈ Ez then, we obtain the cycle:

xi ≿c′ xj ≿c′ · · · ≿c′ xN ≻c′ x0 ≿c′ · · · ≿c′ xi.

Since xi and xj are non-adjacent in z, this means that at least xi+1 does not

appear in the above cycle and hence it is distinct from z. If c′(B) contains no

other element of Vz there are two sub-cases: either Vz ⊆ B or B contains two

elements of Vz which do not form an edge in Ez. Consider first the former.

If Vz ⊆ B, then we have xi ∈ c′(B) and xi+1 ∈ B \ c′(B). Hence xi ≻c′ xi+1

and xi+1 ≿c′ xi, and this two-cycle is a distinct cycle from z, as z possesses an

uncovered cyclic collection Gz, and hence by definition must be supported on

a loop (i.e. be of length greater than two). Consider then the latter sub-case.

We have already shown that if B ∩ Vz contains any alternative non-adjacent

in z to xi then there is another cycle, hence suppose that every element of

B ∩ Vz is adjacent to xi. Since B contains a pair of alternatives non-adjacent

in z, and every element of B ∩ Vz must be adjacent to xi in z, this implies

that B ∩ Vz = {xi−1, xi, xi+1}. Since we have shown already that if xi−1 or

xi+1 belongs to c′(B) there is another cycle, suppose that xi ∈ c′(B) and xi−1,
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xi+1 are not. Then by an analogous argument to the prior sub-case we obtain

a WARP violation. Thus we conclude that c′ must contain some cycle other

than z.

A.2 Proof of Corollary 1

Proof. Suppose γ has an uncovered cyclic collection, Bγ. By the construction

of c′ in the proof (ii) implies (i) in Theorem 1, there exists a choice function

which contains a single cycle, supported on γ, hence by contraposition, (i)

implies (ii). Conversely, the other direction of the proof of Theorem 1 shows

that given any set of choices generating a cycle on γ, no extension of these

choices to Σ (indeed, to any covering budget) can avoid making another cycle.

A.3 Proof of Theorem 2

Proof. We first show that |Σ| < ∞ implies that, for any c ∈ C(X,Σ), at least

one finite irrationality kernel must exist. By definition, =⇒∗ is a preorder.

Consider Ẑ := Zc/ ⇐⇒∗, i.e. the set of cycles of c modulo the equivalence

relation ⇐⇒∗, the symmetric component of the =⇒∗ relation.28 We claim

Ẑ must be finite. To see this suppose, for sake of contradiction, that Ẑ is

infinite. Then there exists (distinct)
{
[z1], [z2], . . .

}
⊆ Ẑ. Let {Gzi}∞i=1 denote

an arbitrary choice of generator for an arbitrary choice of cycle within each

equivalence class. This defines a map
{
[z1], [z2], . . .

}
→ 2Σ, via [zi] 7→ Gzi .

Since |Σ| < ∞, by the pigeon-hole principle this map cannot be injective,

and hence there exists i ̸= j such that Gzi = Gzj and thus some z̃i ∈ [zi]

and z̃j ∈ [zj] have a common generator, and therefore are ⇐⇒∗-equivalent,

implying [zi] = [zj], a contradiction. We conclude Ẑ is finite, and hence

(Ẑ,=⇒∗) is a finite partially ordered set. In particular, if non-empty, it must

contain at least one undominated element. Forming I ⊆ Zc by choosing one

28This is an equivalence relation. If z1 ⇐⇒∗ z2 and z2 ⇐⇒∗ z3, then z1 ⇐⇒∗ z3 by

transitivity of =⇒∗.
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cycle in Zc from each =⇒∗-undominated equivalence class in (Ẑ,=⇒∗) then

yields a finite irrationality kernel as desired.

We now show that any two irrationality kernels I and I ′ for a given

c ∈ C(X,Σ) are equicardinal. Suppose then that I, I ′ ⊆ Zc are distinct

irrationality kernels for c. Then without loss of generality, there exists some

z ∈ I \ I ′. Since I ′ is an irrationality kernel, there exists some z′ ∈ I ′ such

that z′ =⇒∗ z. Since I is an irrationality kernel, by (IK.1) it must be the case

that z′ ̸∈ I but that, by (IK.2), there exists some z′′ ∈ I such that z′′ =⇒∗ z′.

Since =⇒∗ is transitive, z′′ =⇒∗ z as well, and hence z′′ = z and z ⇐⇒∗ z′.

Moreover, by (IK.1) z (resp. z′) must be the only element of I (resp. I ′) with

this property.

Define ϕ : I → I ′ via:

ϕ(z) =

z if z ∈ I ∩ I ′

z′ if z′ ∈ I ′ and z′ ⇐⇒∗ z.

In light of the above, we have shown this map is well-defined and a bijection

between I and I ′; we conclude they are equicardinal, and, in particular, both

finite.

A.4 Proof of Theorem 3

Proof. Suppose, for purposes of contraposition, there exists a loop γ = (Vγ, Eγ) ⊆
Γ(X,Σ) with a cyclic collection Bγ that satisfies neither (i) nor (ii). We will

show that there exists a loop γ′ ⊆ Γ(X,Σ) that supports a cycle and has a

covered cyclic collection, and hence by Theorem 1 that there exists a choice

correspondence whose set of cycles admits a non-trivial relation.

To this end, let B∗ ∈ Bγ denote a budget of cardinality > 2 (the existence

of which is guaranteed by hypothesis). We consider two cases.

Case: Vγ ̸⊆ B∗

We suppose first that Vγ contains some point not in B∗. Let:

E∗ = {e ∈ Eγ : e ⊆ B∗}
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denote those edges in γ that are wholly contained in B∗. By hypothesis, both

E∗ and Eγ \ E∗ are non-empty. As γ is a loop, the edge set of the subgraph

γ̃ = (Vγ, Eγ\E∗) is a finite disjoint union of paths, the endpoints of which all lie

in B∗.29 Let Bo = {x ∈ B∗ :̸ ∃e ∈ Eγ \E∗ s.t. x ∈ e} denote those elements of

B∗ that are not contained in any edge of Eγ\E∗. Suppose this set is non-empty.

Enumerate Bo as {b0, . . . , bK}, define Eo =
{
{b0, b1}, . . . , {bK−1, bK}

}
⊆ EΓ,

and enumerate the path components of γ̃ as γ̃0, . . . , γ̃J .
30 For each 0 ≤ j ≤ J ,

choose one of the two degree-one vertices of the path as the ‘head,’ which we

will write as v+j , and the other as the ‘tail,’ denoted v−j . Define:

Ê = Eo ∪ Eγ̃ ∪
{
{v+j , v−j+1}

}J−1

j=0
∪ {b0, v−0 } ∪ {v+J , bK},

where Eγ̃ = Eγ \ E∗. If, instead, Bo was empty, define Ê analogously, but

replace {b0, v−0 }∪ {v+J , bK} with {v−0 , v+J } in the above expression. Now, every

element of Ê is either an element of Eγ (and hence in EΓ) or is a subset of B∗,

and hence in EΓ, thus γ̂ = (Vγ∪B∗, Ê) ⊆ Γ(X,Σ). Moreover, by construction,

γ̂ is a loop whose every cyclic collection is covered: any cyclic collection for γ̂

must contain Vγ ∪B∗ in the union of its elements. Since |B∗| ≥ 3, this implies

that B∗ must cover the cyclic collection. It remains to show that γ̂ supports

a cycle for some c ∈ C(X,Σ). Since B∗ does not contain Vγ we have that

Bγ \{B∗} ≠ ∅ and, in particular, there exists some x∗ ∈ B∗ such that the two

edges of γ̂ containing x∗ are not both subsets of B∗. Then, define:

c(B) =

B∗ \ {x∗} if B = B∗

B else

yields a revealed preference pair with a cycle supported on γ̂.

Case: Vγ ⊆ B∗

Suppose first that Vγ ⊊ B∗. Enumerate B∗\Vγ as {b0, . . . , bK}, and suppose

e = {x, y} ∈ Eγ is an edge contained in B∗. Then let:

Ê =
(
Eγ \ {e}

)
∪
{
{bk, bk+1}

}K

k=0
− 1 ∪ {x, b0} ∪ {bK , y},

29A path is a finite tree graph with two nodes of degree one, and all other nodes of degree

2.
30As Γ(X,Σ) is finite by hypothesis, so too is every budget and hence B̂.
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and define γ̂ = (Vγ, Ê). If, contrary to our initial assumption, Vγ = B∗, then

simply define γ̂ = γ. Then every cyclic collection of γ̂ is covered, as its vertex

set is simply B∗, which is itself a budget. To show that γ̂ supports a cycle,

observe that by hypothesis, there is some budget B∗∗ ∈ Bγ\{B∗} that contains
an edge e′ of γ different from e. Denote such an e′ = {a, b}. Then e′ ∈ Ê and:

c(B) =

{a} if B = B∗∗

B else

yields a revealed preference cycle supported on γ̂.

A.5 Proof of Theorem 4

A.5.1 Notation

Let W(X,Σ) (resp. G(X,Σ)) denote the set of choice correspondences satis-

fying the weak (resp. generalized) axioms.

For a given c ∈ C(X,Σ) and any e ∈ EΓ there is a well-defined (possibly

empty) restriction of the revealed preference pair (≿c,≻c) to the edge e, which

we denote by (≿c,≻c)
∣∣
e
=

(
≿c

∣∣
e
,≻c

∣∣
e

)
, where:

≿c

∣∣
e
= ≿c ∩ {x, y} × {x, y},

(and respectively ≻c

∣∣
e
). Similarly, given a collection of edges E ′ ⊆ EΓ, we

define:

≿c

∣∣
E′ =

⋃
e∈E′

≿c

∣∣
e
.

A.5.2 Preliminary Lemmas

Lemma 1. Let (X,Σ) be a choice environment and let γ be a loop in Γ(X,Σ).

Then there exists choice function c ∈ W(X,Σ) such that ≿c |Eγ is a cycle if and

only if there exists a cyclic collection Bγ and choice function c̃ ∈ W(X,Σ|Bγ )

such that ≿c̃ |Eγ is a cycle.
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Proof. (=⇒): Suppose there exists a c ∈ W(X,Σ) such that ≿c |Eγ is a cycle.

Then there exists some cyclic collection Bγ with the property that the choices

inducing ≿c |Eγ are all made on elements of Bγ. Then the restriction of c to

Σ|Bγ must still obey the weak axiom, and clearly satisfies the conclusion of the

lemma.

(⇐=): Suppose now there exists a cyclic collection Bγ and a c̃ ∈ W(X,Σ|Bγ )

such that ≿c̃ |Eγ is a cycle. Define an extension of c̃ to all of Σ as follows:

c(B) =

c̃(B) if B ∈ Σ|Bγ

B \
(
∪B̃∈Bγ

B̃
)

else.

This defines a choice correspondence in W(X,Σ), for if x ≿c y for distinct

x, y, either x, y ∈ ∪B̃∈Bγ
B̃, in which case there can be no violation of the weak

axiom as c̃ is in W
(
X,Σ|Bγ

)
, or x ̸∈ ∪B̃∈Bγ

B̃, in which case by construction

¬ y ≻c x, and thus c ∈ W(X,Σ).

Lemma 2. Let (X,Σ) be a choice environment and let γ be a loop in Γ(X,Σ)

with |Vγ| = 3. Then there exists a choice correspondence c ∈ W(X,Σ) with

≿c |Eγ a cycle if and only if there exists a cyclic collection Bγ that is not

covered.

Proof. (⇐=): Suppose that Bγ is an uncovered cyclic collection for γ of mini-

mal cardinality. Let us denote Eγ = {e0, e1, e2}. Then, in particular, for every

ej ∈ Eγ, there is a unique Bj ∈ Bγ with ej ⊆ Bj. Define c̃ ∈ C(X,Σ|Bγ ) via:

c̃(B) =


ej ∩ ej+1 if ∃ ej ∈ Eγ s.t. B ∩ Vγ = ej

B ∩ Vγ if |B ∩ Vγ| = 1

B else.

where all subscripts are taken mod-3. Note c̃ is well-defined, as Bγ is uncovered

from which it follows the first two cases exhaust the possibilities for budgets

in Σ|Bγ that intersect Vγ. Moreover, c̃ ∈ W(X,Σ|Bγ ). First, observe the

restriction of the pair (≿c̃,≻c̃)|Eγ satisfies the weak axiom. But the only
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alternatives c̃ reveals strictly preferred to any others all lie in Vγ, and the

only goods ever revealed preferred to elements of Vγ also lie in Vγ. Hence

c̃ ∈ W
(
X,B ∈ Σ|Bγ

)
, and by Lemma 1 there exists a c ∈ W(X,Σ) such that

≿c |Eγ is cyclic.

(=⇒): Let c ∈ W(X,Σ) be such that ≿c |Eγ is cyclic. Then there exists a

cyclic collection Bγ on which choices generating the cycle ≿c |Eγ are made; fix

such a collection. We now show that this cyclic collection must be uncovered,

lest there exist some B ∈ Σ|Bγ such that Vγ ⊆ B. Suppose, for sake of

contradiction, that such a B exists.

Case 1: Suppose first that c(B) ∩ Vγ ̸= ∅. Then either c(B) induces com-

plete indifference across Vγ, or there exists some pair of elements of Vγ that is

either strictly preferred to, or strictly dominated by the third element. Both

possibilities preclude the existence of the cycle ≿c |Eγ for any c ∈ W(X,Σ).

Case 2: Suppose then that c(B) ∩ Vγ = ∅: then for all x ∈ Vγ and y ∈ c(B)

we have y ≻c x. But c(B) ⊂ B ⊆ ∪B̃∈Bγ
B̃, and since for all x ∈ Vγ there exists

some B̃ such that x ∈ c(B̃), there exists an x̃ ∈ Vγ and B̃ ∈ Bγ such that

x̃, y ∈ B̃ and x̃ ∈ c(B̃). This contradicts our hypothesis that c ∈ W(X,Σ).

Lemma 3. Let (X,Σ) be a choice environment and let γ be a loop in Γ(X,Σ)

with |Vγ| > 3. Suppose there exists a choice correspondence c ∈ W(X,Σ) with

≿c |Eγ a cycle. If every cyclic collection Bγ is covered, then there exists a loop

γ′ in Γ(X,Σ) such that |V ′
γ | < |Vγ| and with ≿c |Eγ′

a cycle.

Proof. Let Bγ be a minimal cyclic collection on which choices inducing ≿c |Eγ

are made, and suppose Bγ is covered. Then there exists some B ∈ Σ|Bγ such

that B contains a non-adjacent pair of vertices of γ. We proceed in two cases.

Case 1: Suppose first that c(B) does not intersect Vγ. Let xk, xk′ ∈ B ∩ Vγ

be one such non-adjacent pair of vertices, and let y ∈ c(B). As c(B) ⊆ B ⊆
∪B̃∈Bγ

B̃, and Bγ is a minimal cyclic collection on which choices inducing the

cycle ≿c |Eγ are made, there is some B̃k∗ ∈ Bγ containing y, such that there

is some xk∗ ∈ c(B̃k∗) ∩ Vγ. Without loss of generality, let xk′ ≿c · · · ≿c xk∗ ≿c
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· · · ≿c xk. In particular, by our hypothesis that c obeys the weak axiom, we

cannot have xk∗ = xk (or xk′).
31 As c(B) does not contain any element of Vγ

by hypothesis, but xk′ ∈ B, we have y ≻c xk′ , and, as xk∗ , y ∈ B̃k∗ , it follows

xk∗ ≿c y. Thus: y ≻c xk′ ≿c · · ·xk∗ ≿c y. Define γ′ to be the graph with

Vγ′ given by the above collection of points, and Eγ′ consisting of those pairs

related in the above cycle (clearly as there is a non-empty revealed preference

for each pair this forms a loop in Γ(X,Σ)). By construction, ≿c |Eγ′
is a cycle.

Now, since xk∗ ̸= xk, xk ̸∈ Vγ′ . Moreover, since xk and xk′ are non-adjacent in

γ, under ≿c |Eγ we also have: xk ≿c · · · ≿c x̄ ≿c · · · ≿c xk′ along the ‘other

side’ of the loop. Thus we also have that x̄ ̸∈ Vγ′ . So while we have added a

point y not in Vγ to our Vγ′ , we have omitted at least two others, xk and x̄,

and we conclude: |Vγ′| < |Vγ| as required.

Case 2: Suppose now that c(B) intersects Vγ. As B contains the non-adjacent

pair xk, xk′ ∈ Vγ, the only way that c(B) can avoid revealing a preference

between xk and xk′ is if neither is in but both are adjacent in γ to c(B).

Moreover, this argument holds for every non-adjacent pair of vertices of γ

contained in B. Now, if c(B) induces a revealed preference xi ≿c xj between

any pair of non-adjacent vertices xi, xj ∈ Vγ this partitions ≿c |Eγ into two sub-

cycles, one of which must always contain a strict relation (either from ≿c |Eγ

or resulting from a strict revealed preference between xi and xj). Letting γ′

be defined by the vertices and pairs supporting any such sub-cycle suffices

to prove the claim. Thus suppose that c(B) does not induce any revealed

preference between any non-adjacent pair (lest we be done). Thus c(B) is

adjacent to both xk and xk′ (and hence singleton) and c(B) = {x∗} induces

both xk ≺c x
∗ ≻c xk′ . But these three points are all elements of Vγ, hence by

virtue of ≿c |Eγ being a cycle we have either xk ≿c x
∗ ≿c xx′ or the reverse.

But both of these yield contradiction via a violation of the weak axiom, and

hence there exists a strictly shorter ≿c-cycle.

31As y ≻c xk and y ≻c xk′ by hypothesis, but xk∗ ≿c y via choice on Bk∗ .

41



A.5.3 Proof of Theorem 4

Theorem. Let (X,Σ) be a choice environment. Then W(X,Σ) = G(X,Σ) if

and only if Σ is well-covered.

Proof. (⇐=): For purposes of contraposition, suppose thatW(X,Σ) ̸= G(X,Σ).

Then there exists some loop γ in the budget graph Γ(X,Σ) and some choice

correspondence c ∈ W(X,Σ) such that ≿c |Eγ is a cycle. If |Vγ| = 3, then

by Lemma 2, Σ is not well-covered and we are done. Hence suppose γ is of

length strictly greater than three. Then there exists some cyclic collection Bγ

on which choices generating the cycle ≿c |Eγ are made. If Bγ is not covered,

we are done, hence suppose it is. Then by Lemma 3 there exists a loop γ′ in

the budget graph of strictly shorter length such that ≿c |Eγ′
is also a cycle.

As we have already concluded this process cannot repeat until it hits a three-

cycle, we conclude that at some stage, there exists some loop γ(n) for which

there exists a cyclic collection Bγ(n) which is not covered and hence Σ is not

well-covered.

(=⇒): We again proceed by contraposition. If a cyclic collection for a

budget graph loop of length 3 is uncovered, by Lemma 2, we immediately

obtain W(X,Σ) ̸= G(X,Σ). Suppose then there exists some loop γ with

|Vγ| > 3 with a cyclic collection Bγ that is uncovered (without loss of generality,

let Bγ be a minimal such uncovered cyclic collection) In particular, let Eγ =

{e0, . . . , eJ−1}. By virtue of γ being uncovered, for each ej ∈ Eγ there exists

a B̃j ∈ Bγ such that for all j ∈ {0, . . . , J − 1} we have ej = B̃j ∩ Vγ, and

by the minimality of Bγ, these {B̃j} are unique and completely exhaust Bγ.

Furthermore, for all B ∈ Σ|Bγ , B ∩ Vγ necessarily also either equals some ej,

is singleton, or is empty.32 Thus, letting (subscripts taken mod-J):

c̃(B) =


ej ∩ ej+1 if ∃ ej s.t. ej = B ∩ Vγ

B ∩ Vγ if |B ∩ Vγ| = 1

B else,

32The loop γ, viewed as a loop in the subgraph Γ(X,Σ|Bγ
), is what is sometimes referred

to as ‘chordless’ in graph theory.
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we obtain a choice correspondence c ∈ W(X,Σ|Bγ ) by an argument identical

to that in the proof of Lemma 2, only for a longer cycle. Clearly ≿c̃ |Eγ is cyclic

and by Lemma 1 this extends to a choice correspondence in c ∈ W(X,Σ) such

that ≿c |Eγ is cyclic, and hence W(X,Σ) ̸= G(X,Σ). Thus, by contraposition,

W(X,Σ) = G(X,Σ) implies the well-coveredness of Σ.

A.6 Proof of Corollary 2

Proof. Suppose there exists some choice correspondence c that has no cycles of

length less than or equal to K, but is not rationalizable. In particular, c obeys

WARP hence the revealed preference pair reduces to a single relation ≿c. Since

c is not rationalizable, there exists some loop γ in the budget graph of length

> K on which ≿c |Eγ is a cycle. Without loss, let γ be the shortest loop with

this property. If every cyclic collection for γ is covered, by Lemma 3 there

would exist a strictly shorter cycle, which cannot occur. Thus γ is uncovered,

and hence (X,Σ) is not K-well covered. By contraposition, (ii) implies (i).

Conversely, suppose (X,Σ) is not K-well covered. It suffices to exhibit a

choice correspondence with no cycles of length less than or equal to K, but

which is nonetheless not rationalizable. In particular, it suffices to exhibit a

choice correspondence with a cycle of length K + 1 or greater. Let γ be any

loop in the budget graph which possesses an uncovered cyclic collection; by

hypothesis at least one such γ exists, and has length > K. The construction for

c in the second part of the proof of Theorem 4 supplies such a correspondence,

hence, again by contraposition, we conclude (i) implies (ii).
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