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Abstract

We develop a least squares theory for the empirical study of mod-

els of preference and individual decision-making. Our approach utilizes

common invariance properties of various models to obtain cardinal mea-

surements of preference intensity. Our theory is widely applicable, and

provides richer, more granular insights into the drivers of a model’s pre-

dictive success or failure than traditional revealed preference methods,

while simultaneously remaining computationally simple. We illustrate

our methodology on common models of preferences over consumption

bundles, dated rewards, lotteries, consumption streams, and Anscombe-

Aumann acts.

1 Introduction

Dating back to at least Samuelson (1938), the study of the testable implications

of models of individual preference and decision making has occupied a central
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position within both empirical and theoretical economics. In behavioral and

decision theory, experimental falsification, or the discovery of ‘paradoxes’ doc-

umenting widespread empirical inconsistency with respect to various axioms,

has been a long-standing driver of progress.1 Related puzzles in macroeco-

nomics and finance (e.g. the equity premium puzzle, see Mehra and Prescott

1985) have similarly led to the creation of new theories of individual behavior

(Epstein and Zin 1989; Constantinides 1990).

A core underlying question in each of these instances is how to evaluate

whether the predictions of a theory (e.g. the expected utility hypothesis or

constant relative risk aversion) are sufficiently consistent with the observed

data. Any such theory necessarily only describes individual behavior in a

stylized fashion; because of this, we expect that no theory will perfectly explain

any sufficiently rich data set. Thus it is critical to understand not only whether

a model is consistent with the data, but rather how best to quantify the degree

of any observed inconsistency.

For consumption data, a seemingly natural approach is to use standard

econometric notions of loss (e.g. mean squared error) to quantify the magnitude

of the deviation between observed and predicted demands generated by some

theory. However, Varian (1990) argues that this approach (i.e. quantifying

inconsistency via deviations between choices) despite its tractability, reflects

the statistical, rather than economic, significance of violations, which may be

unrelated. Instead, Varian argues, one should rely on revealed preference type

inconsistency indices, which admit a more natural economic interpretation.2,3

Nonetheless, these are not without their own disadvantages: such measures

are at best imperfect proxies for economically meaningful quantities, tend to

be computationally difficult and, in the presence of noise or error, present

1E.g., Allais (1953); Ellsberg (1961); Kahneman and Tversky (1979); Rabin (2000).
2For examples of such indices, see Afriat (1972); Houtman and Maks (1985); Varian

(1990); Echenique et al. (2011); Dean and Martin (2016).
3However, stronger interpretations than warranted are often attributed to these indices;

see Echenique (2021) for discussion of this point.
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statistical challenges.4,5

This paper develops a new and widely applicable methodology for evalu-

ating the predictive accuracy of models of preference and individual decision-

making. Our approach applies to any theory which satisfies a common form

of ‘invariance’ property. It hinges on a novel generalization of the concept

of numeraire commodity, which may be defined for any such family. Using

willingness-to-pay measurements denominated in such a ‘virtual numeraire,’

we are able to quantify the extent to which the data deviate from model pre-

dictions in a principled and transparent way.

Our approach enjoys a number of advantages over traditional revealed pref-

erence methods. We show that any data vector in our setting can always be

uniquely decomposed into a rationalizable component, and a sum of (cardi-

nal) revealed preference cycles. Many ordinal methods for trying to extract

consistent rankings from choice data require strong completeness assumptions

to guarantee the existence or reasonableness of predictions.6 In contrast, our

methodology provides a natural means of distinguishing inconsistency from

underlying rationalizable content for general data sets, and without further

assumptions.

Our approach is also computationally simple, particularly in comparison

to many ordinal inconsistency indices.7 Quantifying deviation requires eval-

uating a standard least squares program, subject to finitely many linear in-

equality constraints. Using our notion of virtual numeraire, we show that this

minimization may be regarded as taking place over an appropriate space of

utilities. In particular, the value of our least-squares program corresponds to

the minimal (quadratically-weighted) utility loss that would be suffered by

4There is a growing literature on the computational difficulty of computing various in-

consistency indices for revealed preference data, see Cherchye et al. (2015); Dean and Martin

(2016); Smeulders et al. (2013, 2014, 2021).
5E.g., Echenique et al. (2011).
6See, for example, Bernheim and Rangel (2009); Nishimura (2018).
7E.g., Echenique et al. (2011); Dean and Martin (2016); Smeulders et al. (2013, 2014,

2021).
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any model-consistent agent, were they to generate the observed data.8 This

provides additional nuance for evaluating model fit. For example, it may be

the case that violations of some theory are frequently observed in ordinal data,

yet when cardinal measurements are obtained, the overall utility loss due to

these violations is small. In such cases, it may be reasonable to accept the

theory as a good approximation of behavior.

The analytic structure afforded by our cardinal data additionally allows

us to provide a suite of tools for analyzing a variety of related questions, of-

ten more tractably than existing ordinal methods. The solution to our least

squares program provides a best-fit estimator, which allows us to straightfor-

wardly select the ‘most consistent’ preferences from some theory, even when

none are fully compatible with the data. For parametric models, this provides

an economically meaningful way of obtaining point estimates of parameters.

However our approach retains all its power and simplicity even when applied

to more complex, non-parametric theories.

By examining which inequality constraints bind at our solution, we are also

often able to provide insight into which individual axioms of a theory are most

(or least) well-supported by the data. In Section 5, we illustrate how use this

to compute the ‘shadow price,’ in model fit terms, of Gilboa and Schmeidler

(1989)’s ambiguity aversion axiom.

Finally, in the presence of stochastic noise or measurement error, we pro-

vide a general means of leveraging cross-sectional observations to construct

distribution-free statistical tests of consistency. Our approach again remains

equally valid for both parametric and non-parametric theories.

To more concretely illustrate our approach, the following example consid-

ers the simplest case of quasilinear preferences, where our notion of ‘virtual

numeraire’ reduces to the numeraire commodity. This allows us to highlight

how numeraire-denominated measurements can be used to naturally measure

deviations from a theory in an economically meaningful fashion.

8While our primary focus is on the least squares theory, it is straightforward to consider

other notions of loss within our framework. We discuss this in more detail in Section 4.3.1

and Section 4.3.2.
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An illustrative example: Consider a subject who has preferences over

bundles of (say) money and apples, modelled as elements of (m, a) ∈ R2
+.

Suppose we wish to evaluate how consistent the subject’s behavior is with the

maximization of a quasilinear utility u : R2
+ → R of the form:

u(m, a) = v(a) +m, (1)

for some concave and increasing v : R+ → R. We consider data of the following

form: there is a collection of three bundles (m1, a1), (m2, a2), and (m3, a3), in

general position in R2
+, and the subject is presented with all three possible

pairs of bundles from this collection. For each pair of bundles, we observe

both (i) which bundle is preferred, and (ii) what quantity αij of numeraire

(here, money) must be added to the less-preferred bundle i to make the subject

indifferent between it and the more-preferred bundle j.

Our goal is to test the extent to which the data vector α is consistent

with the model. To be consistent with the representation (1), there must exist

utilities ui for each bundle such that ui = u(mi, ai) = v(ai)+mi for some fixed

choice of v. The set of (u1, u2, u3) that arise in this fashion is defined by a

simple, finite system of linear inequalities.

As the vector α is denominated in numeraire, by (1), it may be identified

with a vector of differences in utilities, under the null hypothesis of consistency.

Hence it is natural to quantify deviations from the predictions of our model by

measuring the distance from our vector α to the set of differences generated by

vectors (u1, u2, u3) consistent with the model. This corresponds to minimizing

the mean squared error between the observed and predicted utility differences,

and requires only solving a simple least squares problem, subject to a finite

collection of linear inequality constraints.

The solution to this program characterizes the set of convex, increasing, and

quasilinear preferences which best fit the vector of observations. This allows

us, for example, to straightforwardly select a best-fitting preference from our

model, even when our vector of observations is inconsistent with every such

preference.

In fact, a more granular analysis is possible. Our decomposition result im-
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plies that any observed error can be uniquely decomposed as error attributable

to (i) the subject exhibiting money-pump like behavior (hence failing to treat

money as a numeraire) and (ii) violations of the monotonicity and concavity

axioms. Indeed, under the null of consistency, the mean squared error ob-

tained from our fitting problem precisely equals the sum of (squared) utility

losses arising from money pump violations and violations of our other model

axioms.9

Moreover, by examining which constraints bind at our solution, we can

quantify how much fit would improve by relaxing the assumptions of mono-

tonicity or convexity (or both). In economic terms, this allows us to quantify

how much less utility a subject would need to lose, under a weakened null hy-

pothesis, in order to explain the data. This allows for far more refined feedback

than is typically available for, e.g., model selection exercises. ■

Perhaps surprisingly, quasilinearity turns out to be far from necessary to

achieve these results. Suppose instead we are interested in preferences on some

abstract consumption space X. We first introduce the notion of a ‘virtual

commodity,’ formally a collection {ϕα}α≥0 of transformations, each mapping

X → X. For any alternative x, we interpret ϕα(x) as representing x, plus

α additional units of the virtual commodity. To ensure consistency between

these transformations, we require that ϕβ

(
ϕα(x)

)
= ϕα+β(x). This simply

says adding β units of the virtual commodity to the alternative which already

consists of x plus α units, must yield the same outcome as adding α+ β units

to x all at once.

Given such a commodity, our first main result provides necessary and suf-

ficient conditions for each preference in some family to admit a representation

satisfying the system of simultaneous functional equations:

u
(
ϕα(x)

)
= u(x) + α, (2)

for all x ∈ X and each α ≥ 0. If such a representation obtains for every

preference, we say that {ϕα}α≥0 defines a virtual numeraire commodity for

the family. When X consisted of bundles (m, a) ∈ R2
+ and each ϕα was the

9For a discussion of other loss functions, see Section 4.3.1 and Section 4.3.2.
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transformation that added α extra dollars to any bundle, satisfaction of (2) was

equivalent to quasilinearity in money. However, many more general families

of preference admit utilities satisfying (2), for appropriately chosen families

{ϕα}α≥0.

For example, suppose instead that X consists of all lotteries over prizes

{$1, $5, $10} except δ$10, the lottery that pays $10 with probability one. For

each α ≥ 0, define the transformation ϕα(p) = e−αp + (1 − e−α) δ$10. Here,

‘adding’ virtual commodity to a lottery p corresponds to mixing p with δ$10.

Given an increasing, expected utility preference, its standard representation(s):

U(p) =
∑

i∈{$1,$5,$10}

pi v(i)

will not satisfy (2). However, the monotone transformation u(p) = − ln
[
c̄ −

U(p)
]
, where c̄ ≡ v($10) is a normalizing constant, does.

This provides a very general approach to obtaining measurements of pref-

erence intensity for a variety of theories or models. We first select a family of

transformations {ϕα}α≥0 that form a virtual numeraire for our theory. Using

this choice, we proceed analogously to the quasilinear case: for some collection

of binary subsets of X, we elicit (i) which alternative in the pair is preferred

(e.g. x′ ≿ x), and (ii) what quantity of additional, virtual numeraire must

be added to the less-preferred alternative to render the subject indifferent be-

tween it and the more-preferred (e.g. for which α∗ ≥ 0 is ϕα∗(x) ∼ x′).10 Just

as in the quasilinear case, compensation measurements denominated in virtual

numeraire form an exact proxy for the utility difference between x′ and x, but

now this difference is measured under any utility satisfying (2).

The paper proceeds as follows. In Section 2 we review related work. Sec-

tion 3 characterizes the existence of representations satisfying (2). We also

provide explicit examples of virtual numeraires {ϕα}α≥0 for many common

classes of preferences over commodity bundles, dated rewards, lotteries, con-

sumption streams, and Anscombe-Aumann acts. Section 4 develops our least-

squares theory, illustrated above in the context of quasilinear preferences, for

10In Online Appendix E we provide a dominant strategy incentive-compatible mechanism

for truthfully eliciting such measurements, for general X and choice of {ϕα}α≥0.
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general virtual numeraire-denominated data. This requires a novel continu-

ous extension theorem for invariant preferences, which is our main workhorse

result. Section 5 illustrates the power of our approach in the context of the

maxmin expected utility model, and Section 6 considers extensions to the case

of stochastic data.

2 Related Literature

The revealed preference literature is too large to adequately survey here; for

an excellent overview, see Chambers and Echenique (2016). Nishimura et al.

(2017) prove an elegant continuous rationalization result for choice data. Our

results differ from theirs at a technical level in two respects: first, our data is

cardinal, rather than ordinal, and second, our continuous rationalizing pref-

erence is also required to satisfy certain additional invariance properties (cf.

Ok and Riella 2014, 2021). Similar to us, Chambers et al. (2021) consider re-

vealed preference data drawn from binary choice sets, however in our setting,

the ordinal choice data is complemented with additional willingness-to-pay

observations.

This paper also contributes to the literature on inconsistency measures for

revealed preference data. Among the first to consider this was Afriat (1972)

in the context of price-consumption data (see also Polisson and Quah 2022).

Echenique et al. (2011) study a money pump index for price-consumption

data. We obtain a virtual numeraire-valued analogue of their money pump

index in our setting.11 These papers provide economically natural measures

of deviation from rational behavior; in contrast, this paper is concerned with

quantifying deviations from the predictions of specific models.

Our concept of virtual numeraire relates to earlier work in measurement

theory, e.g. Krantz et al. (2007). Historically, this focused on the measurement

of intensity (including preference intensity) across various factors of a product

space, and studied which means of evaluating trade-offs across these factors

11Houtman and Maks (1985); Varian (1990) are also classical contributions. See also

Fudenberg and Liang (2020) for a different approach.
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led to additive representations (e.g. Debreu 1959). Our methodology, based

around finding an appropriate, exogenous scale {ϕα}α≥0 to obtain consistent

measures of intensity, may be viewed as a ‘coordinate-free’ generalization of

this approach.12

In the context of stochastic data, a number of papers study the problem

of statistically testing rationalizability for various models. Deb et al. (2023)

consider statistical tests of models of price preference. Kitamura and Stoye

(2018) provide a non-parametric test for the random utility framework.13 Fu-

denberg et al. (2020) provide a test of the drift-diffusion model. Blundell et al.

(2008) provide a test of the classical revealed preference axioms for demand

data. They observe that rationalizable demand responses to price changes can

be characterized by a system of moment inequalities. In Section 6 we exploit

similar structure to derive nonparametric statistical tests of rationalizability

for a wide variety of models.

On risk domains Smith (1961) and Savage (1971) propose using the prob-

ability of a subject winning a given prize itself as a utility-linear unit of com-

pensation in incentive schemes for expected utility maximizers.14 Similarly,

Roth and Malouf (1981, 1982) feature an experimental design in which sub-

jects bargain over probability units to ensure constant marginal utility. Our

usage of suitable families of transformations {ϕα}α≥0 to obtain utility-linear

measurements generalizes these approaches, and suggests natural applications

beyond the problems considered here.

3 A Measure of Intensity of Preference

Our objective in this section is to introduce a method of obtaining consistent,

cardinal measurements of preference intensity for a given family of preferences.

12For a formal statement of this interpretation, see Theorem 3.
13Deb et al. (2018) use a similar approach to develop tests for a model in which consumers

also exhibit price preference.
14Smith cites Savage (1954) for the origin of this idea.
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3.1 Virtual Commodities

Let X be a metric space of alternatives, or consumption space. A preference ≿

is a complete and transitive binary relation onX. Given a preference ≿, we use

≻ and ∼ to denote the asymmetric and symmetric components, respectively.

A preference is continuous if {y : y ≿ x} and {y : x ≿ y} are closed for all

x ∈ X.

A family of transformations {ϕα}α≥0, where ϕα : X → X for all α ≥ 0,

defines a virtual commodity if (i) for all x ∈ X, ϕ0(x) = x, and (ii) for all

α, β ≥ 0 and x ∈ X, ϕβ

(
ϕα(x)

)
= ϕα+β(x). We will always assume that any

virtual commodity is jointly continuous in α and x.15 We interpret the alter-

native ϕα(x) as x plus α additional units of the virtual commodity. Property

(i) requires that adding no units of commodity does not alter any alternative.

Property (ii) is a path-independence condition that requires adding β units of

commodity, to the alternative consisting of x plus α units, be equivalent to

adding α + β units to x at once.

Let M denote a family of continuous preference relations on X, or model.

We say that {ϕα}α≥0 is a virtual numeraire commodity for M if, for each

≿ ∈ M the following conditions are satisfied:

(N.1) Invariance: For all α ≥ 0, x, x′ ∈ X:

x ≿ x′ ⇐⇒ ϕα(x) ≿ ϕα(x
′).

(N.2) Monotonicity: For all α ≥ 0, x ∈ X:

ϕα(x) ≿ x,

with indifference if and only if α = 0.

(N.3) Compensability: For all x, x′ ∈ X,

x′ ≿ x =⇒ ∃α ≥ 0 s.t. ϕα(x) ∼ x′.

15That is, the map (α, x) 7→ ϕα(x) is continuous in the product topology on R+ ×X.
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Invariance says that adding the same quantity of the commodity to two alter-

natives does not affect the preference between them. It rules out cases where

adding some common quantity of the commodity to two alternatives causes the

preference between them to reverse. Monotonicity says the virtual commodity

is a good. Compensability is a richness condition; it rules out lexicographic-

like behavior where no amount of additional commodity could compensate an

agent for receiving a less-preferred alternative.

3.2 Consistent Measurement of Intensity

Given a virtual numereraire {ϕα}α≥0 for some model M, we wish to use these

transformations as a system of rulers, to obtain a systematic measure of pref-

erence intensity across pairs of alternatives. Suppose, for some ≿∈ M, that

x′ ≿ x. We define the compensation difference between the less-preferred

x and more-preferred x′ to be the αxx′ ≥ 0 such that ϕαxx′
(x) ∼ x′. Such

a quantity αxx′ ≥ 0 is guaranteed to exist by (N.3) and is unique by (N.2).

Symmetrically, the compensation difference from x′ to x is defined as −αxx′ .

To derive testable implications for compensation differences data, we will

rely on the following theorem, which is a generalization of standard results on

quasilinear representation.

Theorem 1. A virtual commodity {ϕα}α≥0 is a virtual numeraire for the model

M if and only if every preference ≿∈ M admits a continuous utility repre-

sentation u : X → R such that, for all x ∈ X and all α ≥ 0:

u
(
ϕα(x)

)
= u(x) + α. (3)

Such a representation is unique up to an additive constant; in particular its

utility differences are identified.

We term any utility satisfying (3) a ϕ-additive representation. Theorem 1

justifies our use of the term ‘numeraire’ to describe any virtual commodity

satisfying (N.1) - (N.3). It guarantees that each transformation ϕα may be

viewed as adding α utils of benefit, for any preference in M, independently
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of the alternative to which it is applied. This in turn ensures that observable

willingness-to-pay measurements denominated in ϕ provide an exact proxy for

unobservable utility values.

This identification yields testable implications for data. Suppose we ob-

serve compensation differences data, measured using {ϕα}α≥0, over some col-

lection of pairs of alternatives. If a subject’s behavior is consistent with

any preference satisfying (N.1) - (N.3), Theorem 1 implies that for any sub-

collection of pairs {x0, x1}, {x1, x2}, . . ., {xL−1, x0}, we must have:

L−1∑
l=0

αxlxl+1
=

L−1∑
l=0

u(xl+1)− u(xl) = 0, (4)

where xL ≡ x0. Equation (4) is an ‘adding-up’ condition: it simply says that

the compensation difference between x0 and xL−1 must equal the sum of the

compensation differences αx0x1 + αx1x2 + · · · + αxL−2xL−1
. In Section 4, we

show that for any experiment, these adding-up conditions in fact characterize

consistency, and we leverage this to construct our regression theory.

Theorem 1 also provides guidance for the process of finding virtual nu-

meraires. It highlights that the crucial property needed is that the preferences

of our model M be suitably invariant under the transformations {ϕα}α≥0.

Such families are often discernible either by inspection, or from existing ax-

iomatic work. In Section 3.3, we provide a number of examples of virtual

numeraires for many common classes of preference, across a variety of do-

mains. Taken together, these examples illustrate that while quasilinearity is

commonly viewed as a simple, limited class of preferences, analogous ‘quasi-

linear structure,’ as captured by Theorem 1, actually obtains in a far wider

range of settings and models.

3.3 Examples

In this section, we turn to a number of examples of virtual numeraires, for a

variety of models of economic interest. Our objective is to not only provide a

ready-made list of such numeraires for applied work, but also highlight that
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in practice, the problem of finding a virtual numeraire for models is often

straightforward.

Quasilinear Preferences

Let X = RL
+, and let M denote the collection of all continuous preferences

that are quasilinear with respect to the first commodity. Here, the numeraire

commodity itself may be represented as a virtual numeraire for M, by defining

ϕα(x) = x+ (α, 0, . . . , 0). The utility representation:

u(x) = v(x2, . . . , xL) + x1,

for any ≿∈ M is ϕ-additive, and by Theorem 1, every ϕ-additive utility is of

this form.

Stationary Preferences for Dated Rewards

Consider a decision maker who has preferences over prizes z ∈ Z, delivered at

some time t ∈ R+ in the future. Let X = R+ × Z. An element (t, z) ∈ X

corresponds to the ‘dated reward’ featuring the prize z being delivered to the

decision-maker at time t.16 Following Fishburn and Rubinstein (1982), let M
denote those preferences which admit an exponentially discounted utility:

û(t, z) = ρtv(z),

where 0 < ρ < 1 and v : Z → R++. To such a decision-maker, time is a ‘bad,’

as it delays receipt of the desirable prize z. If we instead ask that (N.2) and

(N.3) hold with the opposite relations, to reflect impatience, and adapt the

definition of ϕ-additivity correspondingly, ϕα(t, z) = (t+α, z) defines a virtual

numeraire for M.17 Compensation differences here reflect how long the receipt

16See also Ok and Masatlioglu (2007) for a complementary interpretation of preferences

over X as the commitment preferences of an agent.
17Formally, we ask that for all x ∈ X, and α > 0, ϕα(x) ≺ x, and if y ≻ x, there exists

some α > 0 such that ϕα(y) ∼ x. Correspondingly, we understand ϕ-additivity in this

context to mean u
(
ϕα(x)

)
= u(x)− α.
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of a more-desirable dated prize must be delayed to make the decision-maker

indifferent with a less-preferred. While the standard representation ρtv(z) is

not ϕ-additive, a monotone transformation is:

u(t, z) =
−1

ln ρ
ln

[
ρtv(z)

]
=

ln v(z)

− ln ρ
− t.

Homothetic Preferences

Let X = RL
+ \ {0} and let M denote the collection of all preferences on X

which admit a continuous, strictly increasing, and positively homogeneous

utility function.18 Then ϕα(x) = eα x defines a virtual numeraire for M. For

this choice of {ϕα}α≥0, (N.1) is equivalent to each ≿∈ M being homothetic.19

If û is a strictly increasing and positively homogeneous representation for a

preference in M, then the monotone transformation:

u(x) = ln û(x)

is easily seen to be ϕ-additive. Moreover, by Theorem 1, every ϕ-additive

representation of preferences in M is of this form, up to an additive con-

stant. Compensation differences here may be interpreted as the amount a

less-preferred bundle must be proportionally scaled to achieve indifference with

a more-preferred.

Expected Utility Preferences

Let X = ∆
(
[0, 1]

)
\ {δ1} denote the space of all monetary lotteries over [0, 1]

less δ1, the point-mass at 1. Let M denote the space of all strictly increasing

expected utility (EU) preferences on X. Then ϕα(p) = e−αp +
(
1 − e−α

)
δ1

defines a virtual numeraire for M. For a given ≿∈ M, let:

û(p) =

∫
v dp

18A utility û is positively homogeneous if, for all λ > 0 and x ∈ X, û(λx) = λû(x). If û

is additionally strictly increasing, it must necessarily take strictly positive values on X.
19A preference on X is homothetic if, for all x, y ∈ X and all λ > 0, x ≿ y ⇐⇒ λx ≿ λy.
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be a normalized expected utility representation, with v(1) = 0. Then:

u(p) = − ln
[
− û(p)

]
represents the same preference and may be seen to be ϕ-additive. By Theo-

rem 1, all ϕ-additive representations for preferences in M are of this form, up

to an additive constant. Here, compensation differences measure how much

a less-preferred lottery must be mixed with δ1 to achieve indifference with a

more-preferred.20

Many common classes of EU preferences admit other natural choices of

virtual numeraire. If M consists of the collection of all constant absolute

risk aversion (CARA) EU preferences, then defining ϕα(p) as providing p plus

α units of additional guaranteed wealth yields a virtual numeraire.21 Here,

the ϕ-additive representations are equal to the certainty equivalent, up to an

additive constant. In fact, {ϕα}α≥0 is a virtual numeraire for a larger class

of (not necessarily EU) preferences; see e.g. Safra and Segal (1998); Mu et al.

(2021). Analogous results obtain for the class of constant relative risk aversion

preferences.

Geometric & Quasi-hyperbolic Discounting

LetX denote the space of all bounded, infinite-horizon, discrete-time consump-

tion streams. Let M denote the collection of all quasi-hyperbolic preferences

on X (e.g. Laibson 1997) with fixed continuous, strictly increasing, and un-

bounded flow utility v : R+ → R+, i.e. those preferences admitting a utility

of the form:

u(x) = v(x0) + β
∞∑
t=1

δtv(xt),

20Note that in normalizing the Bernoulli utility v(1) = 0, we have used the additive degree

of freedom in the standard expected utility representation. The remaining multiplicative

degree of freedom then precisely becomes the additive degree of freedom in the ϕ-additive

representation.
21Here, letX be e.g. the set of all finitely supported monetary lotteries, to ensure {ϕα}α≥0

is well defined.
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where 0 < β ≤ 1 and 0 < δ < 1. When β = 1, this reduces to the stan-

dard geometric discounting model, see Koopmans (1960). For all t > 0, define

ϕα(x)t = xt, and for t = 0, let ϕα(x)0 = v−1
(
v(x0) + α

)
.22 It follows immedi-

ately that every such u is ϕ-additive, as is any utility of the form:

u(x) = v(x0) + w(x1, x2, ... ).

There are many other closely related virtual numeraires for M. For example,

letting ϕ′
α(x)t = v−1

(
v(xt) + α

)
for all periods in some set T , rather than just

T = {0}, yields a virtual numeraire as well.

Constant Absolute Ambiguity Aversion

Let S denote a finite set of states of the world, and X = RS denote the

pure-ambiguity domain of (risk-free) monetary acts. Let M denote the set of

continuous preferences on X that admit a utility representation of the form:

u(x) = w
(
v(x1), . . . , v(xS)

)
, (5)

where v : R → R is a fixed, strictly increasing, and unbounded-above state-

contingent utility, and w : RS → R is an increasing, translation-invariant

utility functional, i.e. satisfying:

w
(
y + α1S

)
= w(y) + α

for all α ≥ 0, y ∈ RS, where 1S denotes the vector of all ones.23 M may be

viewed as encapsulating a wide range of ambiguity attitudes, given fixed risk

attitude.24 It includes, for example, the subjective expected utility, Choquet

22Here ϕα(x)t denotes the t-th component of ϕα(x).
23Grant and Polak (2013) interpret translation-invariance over utility acts as reflecting

constant absolute ambiguity aversion.
24Viewing X as a subset of the larger Anscombe-Aumann domain featuring both ambi-

guity and monetary risk, the common state-contingent utility vu can be viewed as being

pinned down by the expected utility risk preference of a subject on this larger domain. Thus

studying which preference in M best fits a given set of empirical data may be viewed as

studying the subject’s ambiguity attitude, given their prescribed risk preference.
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expected utility, maxmin expected utility, variational preference, and dual self

expected utility models. Define each ϕα component-wise via:

ϕα(x)s = v−1
(
v(xs) + α

)
.

Then every utility of the form (5) is ϕ-additive, and by Theorem 1 every

ϕ-additive representation of preferences in M is of this form.

This approach extends naturally to the full Anscombe-Aumann domain

featuring both risk and ambiguity. Suppose, for example, that X consists

of all acts mapping S → ∆
(
[0, 1]

)
\ {δ1}, and that preferences in M admit a

representation satisfying (5), where v is an expected utility representation over

lotteries, and w is positive homogeneous. Then ϕα(x)s = e−αxs + (1− e−α)δ1

defines a virtual numeraire.

3.4 Regularity Conditions

We conclude by briefly stating some basic regularity conditions needed for

future results. All these conditions are satisfied in every example in Section 3.3.

A virtual commodity {ϕα}α≥0 is said to be regular if is injective in x and

α.25 An alternative x′ is obtainable from x, denoted x ⊴ x′ if there exists

α ≥ 0 such that x′ = ϕα(x). Define x ∼⊴ x′ if either x is obtainable from x′ or

vice-versa. The following are mild topological conditions on X and {ϕα}α≥0

which will be used in subsequent results.

(A.1) Cross Section: There exists a continuous map s : X → X, such that

x ∼⊴ x′ implies s(x) = s(x′), and x ∼⊴ s(x) for all x ∈ X.

(A.2) No Accumulation: For all x ∈ X, there exists ε > 0 and T > 0 such

that, for all x′ ∈ Bε(x) and all α > T :

ϕα(x
′) ̸∈ Bε(x),

where Bε(x) denotes the ε-ball about x.

25That is, if each transformation ϕα is an injective map X → X, and the map α 7→ ϕα(x)

is an injective map from R+ → X for each x ∈ X.
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Condition (A.1) is a weak technical requirement. Roughly speaking, it ensures

preferences’ indifference sets are not substantially ‘less connected’ than X.26

Condition (A.2) says that no alternative may be regarded as the limit of adding

an infinite amount of virtual commodity to any other.

4 Least Squares Theory

In this section, we develop a least squares theory for evaluating the predictive

accuracy of general models of preference. Toward this end, our main theorem

establishes a decomposition result. We show that every data set, arising from

any experiment, can be uniquely decomposed into two orthogonal components:

a rationalizable term, and a sum of cardinal revealed preference cycles. Thus,

unlike in the case of classical revealed preference data, we obtain a canonical

method of separating the data into consistent and inconsistent components.

4.1 Preliminaries

Fix a choice of consumption space X and regular virtual commodity {ϕα}α≥0.

An experiment is a finite collection E of pairs of elements of X. To avoid

trivialities, we assume that, for any {x, x′} ∈ E , it is not the case that ϕα(x) =

x′ for some α ≥ 0 or vice-versa.27 A data set consists of a compensation

difference measurement for each pair {x, x′} ∈ E (recall the compensation

difference is equal to the unique α∗ that solves x ∼ ϕα∗(x′) if x ≿ x′, or x′ ∼
ϕα∗(x) if x′ ≿ x).28 We identify an experiment E with the undirected graph

whose vertex set V ≡ {x1, . . . , xK} consists of those alternatives appearing in

some pair in E , and whose edge set is E .
26It rules out, for example, pathological fringe cases where every indifference set of every

continuous preference satisfying (N.1) - (N.3) is totally disconnected, even while X itself is

connected.
27This serves only to rule out questions such as ‘how many units of ϕ are needed to achieve

indifference between x and x plus ten units of ϕ?’
28In Online Appendix E, we provide an incentive compatible mechanism for eliciting this

data for general choice of X and {ϕα}α≥0.
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Given a graph (V , E), let E⃗ denote the set of oriented edges, E⃗ =
{
(xi, xj) ∈

X × X : {xi, xj} ∈ E
}
. A flow is a function F : E⃗ → R such that Fxixj

=

−Fxjxi
for all (xi, xj) ∈ E⃗ .29 Let F denote the space of all flows on (V , E); it is

a vector space under coordinate-wise addition and scalar multiplication.30 It

is precisely the collection of possible compensation differences data sets that

could arise from the experiment (V , E).

Gradient Flows

Let U = RV denote the space of utility functions on V . By minor abuse of

notation we will write i for xi, ūi for ū(xi) and so forth. For any utility vector

ū ∈ U , its gradient is the flow whose value on an oriented edge is given by

the signed difference of the utility values at its endpoints:

(grad ū)ij = ūj − ūi,

for all (i, j) ∈ E⃗ , i < j. This defines a linear map grad : U → F . We say a

flow is a gradient flow if it is the gradient of some utility vector in U .

4.2 Rationalizability & Inconsistency

Let {ϕα}α≥0 be a regular virtual commodity, and Y ∈ F a ϕ-compensation dif-

ferences data set for some experiment (V , E). The data Y are ϕ-rationalizable

if there exists a continuous preference ≿ for which {ϕα}α≥0 is a virtual nu-

meraire, and which satisfies:

Yij ≥ 0 ⇐⇒ ϕYij
(xi) ∼ xj (6)

for all {i, j} ∈ E (recall Yij denotes the observed compensation difference from

xi to xj). If such a preference exists, we say ≿ rationalizes Y . By Theorem 1,

this is equivalent to the existence of a ϕ-additive representation u such that:

Yij = u(xj)− u(xi). (7)

29For a pair {xi, xj} ∈ E , Fxixj denotes the flow from xi to xj .
30Formally, we endow it with basis {1(i,j)

}
{(i,j)∈E⃗ : i<j}, where 1(i,j) denotes the flow equal

to one on (i, j) (and hence minus one on (j, i)) and zero along every other oriented edge.
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Equation (7) implies that if Y is ϕ-rationalizable, it is necessarily a gradient

flow, as Y = gradu
∣∣
V , and hence it must satisfy the adding-up conditions

(4). Conversely, (4) are sufficient for the existence of some ū ∈ U such that

Y = grad ū. However, it is unclear whether this suffices for rationalizability, as

a priori it is not obvious which vectors ū ∈ U are the restrictions of continuous,

ϕ-additive representations. Our next theorem is the main structural result of

this paper. It establishes that no matter the choice of {ϕα}α≥0 or (V , E), every
vector ū ∈ U is the restriction of some continuous and ϕ-additive utility. Thus

the adding-up conditions (4) are not only necessary, but also sufficient for

ϕ-rationalizability, no matter how complex the structure of the environment,

experiment, or virtual commodity may be.

Theorem 2. Let {ϕα}α≥0 be a regular virtual commodity which satisfies (A.1)

and (A.2). Then for every experiment (V , E), for any dataset Y ∈ F , the

following are equivalent:

(i) For every collection (i0, i1), (i1, i2), . . . , (iL−1, i0) ∈ E⃗,
L−1∑
l=0

Yilil+1
= 0,

where iL ≡ i0.

(ii) The data Y form a gradient flow.

(iii) The data are ϕ-rationalizable by a continuous preference.

Theorem 2 tells us that the rationalizable data sets always form a linear

subspace of F . One consequence of this is that every data vector may be

uniquely written as a sum of a ϕ-rationalizable term, and a uniquely deter-

mined ‘residual’ component that is orthogonal to every ϕ-rationalizable vector.

This latter term reflects the inconsistency in the observed data: it is zero if

and only if the data are ϕ-rationalizable. This residual inconsistency vector

admits a particularly natural economic interpretation.

Call a flow C ∈ F a perfect cycle if Ci0i1 = Ci1,i2 = . . . = CiL−1i0 = c

on some collection of oriented edges (i0, i1), (i1, i2), . . . , (iL−1, i0) ∈ E⃗ , and C is
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equal to zero everywhere else. Perfectly cyclic flows are cardinal analogues of

revealed preference cycles. If a perfect cycle with c > 0 was observed as data,

it would mean:

ϕc(xil) ∼ xil+1
,

for all l = 1, . . . , L−1, where xiL ≡ xi0 . This implies that for every l, the agent

would be willing to exchange xil , plus up to c units of numeraire, for xil+1
, and

hence could be exploited as a ‘numeraire pump’ by a savvy arbitrageur.31

It is a standard result in graph theory that a flow is orthogonal to every

gradient vector if and only if is a sum of perfect cycles.32 We summarize this

below.

Proposition 1. For any flow R ∈ F , the following are equivalent:

(i) R is a sum of perfect cycles.

(ii) R is orthogonal to every gradient flow, i.e.:∑
{(i,j)∈E⃗ : i<j}

(
grad ū

)
ij
Rij = 0 (8)

for all ū ∈ U .

Thus every data set can be uniquely decomposed into two orthogonal terms:

a rationalizable component, and a sum of cardinal revealed preference cycles.

This highlights a notable advantage of our approach: for ordinal choice data,

it is difficult to separate cyclic inconsistency from rationalizable material (e.g.

Bernheim and Rangel 2009; Nishimura 2018). On the other hand, Theorem 2

and Proposition 1 show that for any type of compensation differences data,

revealed preference cycles and rationalizable content occupy complementary,

orthogonal subspaces of F .

This suggests a natural notion of ‘best fitting’ rationalizable preferences

given data: a preference belongs to the best-fit set if its ϕ-additive utility

31By (N.2) this also implies xil ≺ xil+1
for all l, yielding an ordinal revealed preference

cycle.
32This follows, e.g., by combining Theorem 1 in Jiang et al. (2011) and Corollary 14.2.3

of Godsil and Royle (2001).
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differences are exactly equal to the rationalizable component of the data vector.

Our regression theory operationalizes this idea. By minimizing a least-squares

objective, we orthogonally project our data onto the rationalizable subspace,

guaranteeing we purify away only cyclic inconsistency, and leave behind the

rationalizable content.

Rationalizability for General Models

Often, we wish to test whether a rationalizing preference can be found which,

in addition, belongs to a particular model M. When such a rationalizing

preference exists, we will say the data Y are M-rationalizable. Theorem 2

characterizes M-rationalizability of a number of models, such as the classes

of quasilinear or homothetic preferences, stationary preferences over dated

rewards, or general CARA preferences (see Section 3.3). In each of these

instances, the set M coincides with the set of all preferences for which the

relevant ϕ is a virtual numeraire. However, many models of interest are not

fully characterized by (N.1) - (N.3) alone.

To test for M-rationalizability generally, Theorem 2 suggests finding the

subset KM ⊆ U of vectors that are the restrictions to V of the ϕ-additive

representations of M. These sets reflect the additional ‘shape’ restrictions

that characterize which ϕ-additive utilities represent preferences in M. These

sets KM are frequently straightforward to compute, and often possess a highly

tractable structure.

Example 1. Suppose X = RL
++, ϕα(x) = eαx and (V , E) is arbitrary. Let

M denote the collection of all Cobb-Douglas utilities on X. The ϕ-additive

representations of Cobb-Douglas preferences are all of the form:

u(x) =
L∑
l=1

κl lnxl + c.

Because the utility differences of any such u are independent of c, we may

normalize c to zero without loss. Thus a data vector Y is Cobb-Douglas

rationalizable if and only if Y = grad ū for some vector ū for which there
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exists κ ∈ RL such that:

ūi =
〈
κ, ℓ(xi)

〉
∀i = 1, . . . , K

⟨κ,1⟩ = 1

κ ≥ 0,

(9)

where ℓ : RL
++ → RL denotes the component-wise natural logarithm. Note

that KM, i.e. the set of such vectors ū, is defined by finitely many linear

inequalities. ■

Example 2. Suppose now X = RL
+ and ϕα(x) = (x1 + α, x2, . . . , xL). Let

M denote the collection of preferences which admit an increasing, quasilinear,

and quasiconcave utility.33 It is straightforward to show ū ∈ KM if and only

if there exist vectors π1, . . . , πK ∈ RL and scalars γ1, . . . , γL ∈ R such that:

ūi = ⟨πi, xi⟩+ γi ∀i = 1, . . . , K

⟨πi, xi⟩+ γi ≤ ⟨πj, xi⟩+ γj ∀i, j = 1, . . . , K

πi,1 = 1 ∀i = 1, . . . , K

πi ≥ 0 ∀i = 1, . . . , K,

(10)

where πi,1 denotes the first component of the vector πi.
34 In particular, even

though the preferences of M cannot be described by any finite vector of pa-

rameters, KM is still defined by a finite system of linear inequalities. ■

4.3 Least Squares Theory

Let us now fix a model M. Going forward, we will assume that (i) KM is

convex, and (ii) KM + ker(grad) is closed.35 These conditions ensure that

grad(KM) ⊆ F is closed and convex.36 Both conditions are automatically

33By quasilinear, we mean with respect to the first commodity.
34See Online Appendix G for a formal proof.
35The kernel of the gradient, ker(grad), consists of vectors that are constant on the vertex

sets of each connected component of (V, E). In particular, when (V, E) is connected, it

consists only of vectors of the form (c, . . . , c), c ∈ R.
36See, e.g., Holmes (2012), Lemma 17.H.
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satisfied if KM is defined by a finite set of linear inequalities. This stronger

requirement is satisfied by both Example 1 and Example 2, and turns out to

hold quite broadly; see Online Appendix G.

This enables us to evaluate the predictive accuracy of any such model by

solving a simple, constrained least squares problem:

min
ū∈KM

∥∥grad ū− Y
∥∥2

2
. (11)

Geometrically, solving (11) amounts to projecting the data vector Y onto

the subset of M-rationalizable flows, grad(KM). Since this set is closed and

convex by hypothesis, (11) admits a unique minimizer, which we denote by

Y ∗
M. We term this flow the best-fit estimator for the model M. It captures

the preference(s) in M which minimize the mean squared error between the

observed compensation differences Y , and those predicted by the model. For

parametric models such as in Example 1, Y ∗
M will generally identify a unique

preference. In such instances, (11) provides a natural method for estimating

model parameters from the data Y . When models are non-parametric, as

in Example 2, the estimator Y ∗
M will select for a set of preferences; see also

Section 5.2.

4.3.1 Economic Content of Mean Squared Error Minimization

Consider a subject with preference ≿∈ M. Any such preference yields a

tuple of willingness-to-pay measurements grad ū ∈ gradKM, where ū = u
∣∣
V

for some ϕ-additive representation u. However, suppose instead that some

vector of compensation differences Y is observed. If, for some (i, j), we see

ūj − ūi > Yij, the subject was willing to exchange alternative j for i plus Yij

units of numeraire. Were such a trade realized, the subject would suffer a

loss in utility terms equal to Lij =
∣∣(ūj − ūi)− Yij

∣∣ > 0 under any ϕ-additive

utility. Conversely, if we observed Yij > ūj − ūi, this would mean the subject

would reject any offer to swap for compensation equal to Yij−ε, for any ε > 0.

In this case, the agent would suffer an opportunity cost of up to Lij utils in

missed gains from trade, should they adhere to their reported trade strategy.
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This means that at any solution to (11), the value of the least squares

program may be regarded as the minimal, quadratically-weighted (ϕ-additive)

utility loss that would be suffered by any M-consistent agent, should they

commit to the observed trades Y .37 Economically, the quadratic weighting

reflects a desire to penalize more strongly those exchanges which yield larger

losses in the fitting exercise. However, as our next result shows, as a loss

function it also provides a means of distinguishing between different sources

of error.

Let Y ∗
Add denote the projection of Y onto the subspace of gradient flows.38

Our next result says that for any Y ∈ F , solving (11) is equivalent to a two-

stage least squares procedure where Y is first projected onto the gradient flows,

then the solution from this fitting exercise, Y ∗
Add, is regressed on M.

Proposition 2. For any experiment (V , E), for every Y ∈ F ,

Y ∗
M = argmin

ū∈KM

∥∥grad ū− Y ∗
Add

∥∥2

2
.

In particular, ∥∥Y − Y ∗
M
∥∥2

2
=

∥∥Y − Y ∗
Add

∥∥2

2
+ ∥Y ∗

Add − Y ∗
M
∥∥2

2
. (12)

Equation (12) says that the mean squared error associated with (11) is simply

the sum of the error attributable to the data not being a vector of ϕ-additive

utility differences, plus error stemming purely from the best-fit utility dif-

ferences not satisfying the shape constraints of the model. This allows us to

37One could alternatively specify (11) as an L1 minimization problem. In this case, the

value of the (linear) program would have a direct, unweighted interpretation. This may be

useful in applications where the unique best-fit estimates provided by the (strictly convex) 2-

norm are less important. This is analogous to classical regression theory where least absolute

deviations and least squares theories have their own context-dependent advantages.
38This may be computed as the gradient of any minimizer to (11), when the constraint

set is taken to be all of U . This solution is given in closed form by:

Y ∗
Add = grad [grad⊺grad]†grad⊺ Y,

where † denotes the the Moore-Penrose pseudoinverse of a matrix.
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Figure 1: A residual flow R = (R12, R13, R14, R23, R24, R34) satisfying (8), along with two

decompositions into sums of perfect cycles. The lower bound of
∥∥R∥∥

1
= 14 is attained by

the sum of the money pump values of the bottom (though not the top) decomposition.

distinguish between error arising from our identifying assumption that our cho-

sen {ϕα}α≥0 is indeed a virtual numeraire to the subject, versus model-specific

considerations.

4.3.2 An Alternative First-Stage Criterion: The Money Pump

The first stage residual, Y − Y ∗
Add, admits a representation as a sum of cyclic

flows, capturing numeraire-valued arbitrage opportunities against the subject.

This suggests an analogue of the money pump index of Echenique et al. (2011)

as an alternative means of quantifying this deviation.39 Define the money

pump value of a perfect cycle C, where Ci0i1 = Ci1,i2 = . . . = CiL−1i0 = c on

(i0, i1), (i1, i2), . . . , (iL−1, i0) ∈ E⃗ and is zero elsewhere, viaMP (C) = c L. This

corresponds to the amount of numeraire an arbitrageur could extract from the

subject via a cyclic sequence of trades.

It is natural to seek to extend MP from pure cycles to general residuals

R linearly, by decomposing R as a sum of pure cycles then summing the

39The money pump index was first studied by Echenique et al. (2011), in the context

of price-consumption data. Roughly speaking, it reflects the amount of money one could

extract from a consumer who violates the generalized axiom of revealed preference.
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associated money pump values. However, such decompositions are non-unique;

moreover, the sum of the money pump values of different decompositions of

the same residual will generally differ, see Figure 1. Instead, we consider the

most conservative extension.

Let C ⊊ F denote the set of pure cycles. For any R satisfying (8), let D(R)

denote the collection of all finite decompositions of R into pure cycles.40 We

extend MP : C → R to a function MP ∗ over all flows satisfying (8) via:

MP ∗(R) = inf
{C1,...,CM}∈D(R)

M∑
m=1

MP (Cm).

In other words, MP ∗ attributes as little inconsistency to the subject as pos-

sible, by taking an infimum across all finite decompositions. In spite of its

definition as a value function, our next result asserts that MP ∗ is in fact sim-

ply the L1 norm. This simplicity in our setting is notable, given the compu-

tational difficulty of calculating the money pump index for price-consumption

data (e.g. Smeulders et al. 2013).

Proposition 3. For all R ∈ F satisfying (8), the money pump value of R is

equal to its L1 norm:

MP ∗(R) = ∥R∥1.

Moreover, the infimum over D(R) is always attained.

While our focus is on L2 loss, Proposition 3 provides an economically com-

pelling alternative, particularly for models where KM = U . It also illus-

trates the economic naturality of our numeraire-based approach, and provides

another example of familiar economic ideas taking on a far simpler, more

tractable form in our setting.

5 Application: MEU Preferences

Let X = RS denote the pure ambiguity domain of monetary acts for a finite

state space S. We will be interested in the model MMEU consisting of the

40That is, those collections {C1, . . . , CM} ⊆ C such that
∑

m Cm = R.
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maxmin expected utility preferences featuring a fixed, known state-contingent

utility of consumption v : R → R.41 Such preferences are represented by a

utility of the form:

u(x) = min
π∈C

Eπ

(
v(x)

)
= min

π∈C

∑
s∈S

πsv(xs), (13)

where C ⊆ ∆(S) is some compact, convex set of priors over states of the

world.42 The function minπ∈C Eπ(·) is referred to as the utility functional.

We assume that v is (i) continuous, (ii) strictly increasing, (iii) unbounded

above, and (iv) normalized so that v(0) = 0 and v(1) = 1. For any act

x ∈ RS and α ≥ 0, we define the virtual commodity ϕα(x)s = v−1
(
v(xs) + α

)
component-wise. Any utility of the form (13) is ϕ-additive. In what follows,

see Online Appendix F for omitted derivations.

5.1 Testing Ambiguity Aversion in a Two-State World

Suppose first that there are only two states of the world. Let x0 = (0, 0) denote

the zero act, and x1 = (1, 0) and x2 = (0, 1) the Arrow securities for states 1

and 2; we will consider the experiment E =
{
{0, x2}, {x1, x2}

}
.

Figure 2 plots grad(KMEU), the set of MEU-rationalizable flows for this

experiment. The corners of the rationalizable triangle correspond to the pref-

erences in MMEU whose sets of priors are {δ1}, {δ2}, and ∆(S) respectively.43

Given data Y , the best-fit estimator Y ∗
MEU is obtained by projecting Y onto

this triangle.

The faces of the rationalizable triangle have natural axiomatic interpreta-

tion. The preferences corresponding to flows along the top edge of grad(KMEU)

are characterized by the property that x0 ∼ x1. This inequality constraint rep-

resents the axiomatic requirement that preferences inMMEU be non-decreasing

41Practically speaking, v could be chosen either on the basis of theoretical considerations

or first-stage estimation of the subject’s risk preference.
42Note that there is a one-to-one correspondence between closed, convex sets of priors C

and preference in MMEU . We will freely identify such preferences with their sets of priors.
43Recall δs denotes the probability measuring assigning a mass of one to {s}.
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Figure 2: The MEU-rationationalizable flows (violet triangle) arising from the experiment

E =
{
{0, x2}, {x1, x2}

}
. For each vertex of the triangle, the level set through the origin

of the rationalizing MEU functional (orange) and corresponding set of priors (cyan) are

shown. Each face of the triangle corresponds to a particular axiomatic constraint of the

model: the top and left faces to monotonicity of consumption in state one (resp. two), and

the bottom-right to ambiguity aversion.

in state-one consumption. Analogously, the left face is characterized by the

property that x0 ∼ x2 and hence reflects monotonicity of consumption in

state two. The flows along the bottom-right face correspond to the subjective

expected utility preferences. These are precisely the ambiguity-neutral prefer-

ences in MMEU , hence this inequality captures the ambiguity aversion axiom

of Gilboa and Schmeidler (1989).44

Suppose Y ∗
MEU lies on the relative interior of the lower-right face of ratio-

44Any ϕ-additive utility may be written as u(x) = w
(
v(x1), . . . , v(xS)

)
, where w is a

translation-invariant utility functional (see Section 3.3). This representation is of the form

(13) if and only if w is additionally increasing, concave, and positively homogeneous; see, e.g.,

Ok (2011) H.1.3 Lemma 2. Every data set arising from E is rationalizable by a ϕ-additive

utility where w is additionally positively homogeneous. This leaves monotonicity and the

concavity of w (corresponding to ambiguity aversion) as the only falsifiable implications of

the model for E .
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10 F02

F12 F

YY − Y ∗
MEU

Y − Y ∗
CEU

Figure 3: The set of MEU-rationalizable (violet) and CEU-rationalizable (violet or aqua-

marine) vectors for E . Letting ΠMEU and ΠCEU denote the respective projections onto

these sets, the quantity
∥∥Y −ΠMEUY

∥∥2
2
−
∥∥Y −ΠCEUY

∥∥2
2
reflects the shadow price, in mean

squared error terms, of imposing ambiguity aversion, conditional upon requiring monotonic-

ity, translation invariance, and homotheticity.

nalizable triangle. Then ambiguity aversion is the sole axiomatic constraint

binding at the solution to (11). To quantify the gain in fit from relaxing

ambiguity aversion, consider the model obtained by dropping only ambiguity

aversion from the MEU axioms. This corresponds to the class of invariant

biseparable preferences (e.g. Chandrasekher et al. 2022). However, in our

simplified setting, the testable implications of this model coincide with the

conceptually simpler Choquet expected utility (CEU) theory of Schmeidler

(1989). The CEU-rationalizable set is plotted in Figure 3. By comparing the

difference in value of (11) obtained under these two nested constraint sets,

one obtains a measure of the shadow price, in model fit terms, of imposing

specifically the ambiguity aversion axiom.
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5.2 Identification with |S| > 2

Suppose now |S| > 2. As a consequence, a general compact, convex set of

priors is no longer describable by a finite set of parameters. For any experiment

(V , E), evaluating (11) forMMEU amounts to solving the following constrained

least squares problem:

min
ū,π1,...,πK

∥∥grad ū− Y
∥∥2

2

subject to ūi = ⟨πi, vi⟩ ∀i = 1, . . . , K

⟨πi, vi⟩ ≤ ⟨πj, vi⟩ ∀i, j = 1, . . . , K

⟨πi,1S⟩ = 1 ∀i = 1, . . . , K

πi ≥ 0 ∀i = 1, . . . , K,

(14)

where ū ∈ U , π1 . . . , πK ∈ RS, and K = |V|. Here vi =
(
v(xi,1), . . . v(xi,S)

)
is the utility-act associated with xi ∈ V under v. Once again, in spite of

MMEU being fully non-parametric, the constraint set in (14) is still defined

by a finite set of linear inequality constraints.45

However, a solution to (14) no longer uniquely identifies a preference in

MMEU . Suppose (ū, π1, . . . , πK) is a feasible solution to (14). The vector ū,

coupled with the utility acts v1, . . . , vK , defines a family of hyperplanesHvi,ūi
=

{x ∈ RS : ⟨vi, x⟩ = ūi}. Let H̄vi,ūi
denote the restrictions of these hyperplanes

to the affine hull of ∆(S). The first and second sets of constraints in (14)

imply that each H̄vi,ūi
supports co{π1, . . . , πK} at πi. Thus co{π1, . . . , πK} is

a set of priors defining a preference in MMEU consistent with (ū, π1, . . . , πK).

However, many other preferences in MMEU are also consistent. Let:

C̄ =

( K⋂
i=1

H̄+
vi,ūi

)⋂
∆(S),

where H̄+
vi,ūi

denotes the i-th upper half-space. The following result character-

izes the identified set arising from each feasible solution to (14).

45In Online Appendix G we characterize the sets of shape constraints for invariant bisep-

arable preferences, as well as SEU, CEU, and variational preferences, allowing for the ax-

iomatic analysis of Section 5.1 to be carried out for general experiments and state spaces,

as well as for model selection exercises via Proposition 2.
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πi

C∗

H̄vi,ūi

s1 s2

s3

(a) The set of priors C∗ associated

with a preference in MMEU . The

vector (ū, π1, . . . , πK) is a solution to

(14), as for each vi, the hyperplane

H̄vi,ūi
supports C∗ at πi.

C

C̄

H̄vi,ūi

(b) Every feasible solution to (14) de-

fines a polytope C̄ =
(
∩i H̄

+
vi,ūi

)
∩

∆(S). A set of priors C ⊆ C̄ defines

a rationalizing preference if and only

if each facet of C̄ contains some ex-

tremal point of C.

Figure 4: An experiment with V = {x1, . . . , x5} and a rationalizing utility vector ū define

a system of hyperplanes on the simplex. From these hyperplanes, we obtain upper and

lower envelope sets of priors C̄ and C. Every set of priors associated with a rationalizing

preference in MMEU is contained within C̄ and contains C.

Proposition 4. Fix a feasible (ū, π1, . . . , πK). A closed, convex set of priors

C ⊆ ∆(S) corresponds to a preference in MMEU consistent with this vector if

and only if:

(i) The set of priors C ⊆ C̄, and

(ii) Each hyperplane Hvi,ūi
contains some extremal point of C.

In particular, the identified set depends only upon ū.

It follows that C̄ is the unique largest set of priors consistent with (ū, π1, . . . , πK).
46

This provides bounds on the priors held by an individual, even absent full iden-

46Equivalently, it is the set of priors of the unique, most-ambiguity averse preference in

the identified set.
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tification: if Y = grad ū for ū ∈ KMEU , and π ̸∈ C̄, then π is not held by any

preferences in MMEU that rationalize Y .

Figure 4 shows the supporting hyperplanes for the preference in MMEU

whose set of priors is C∗. The upper envelope C̄ is simply the intersection of

the associated upper half-spaces. It also depicts C, the set of priors held by

every rationalizing MEU preference.47 Thus, while C∗ may be unknown, the

vector u, along with V , allow one to derive optimal upper and lower bounds,

C ⊆ C∗ ⊆ C̄.

These bounds generate further economic predictions. For example, sub-

jects with risk averse MEU preferences engage in purely speculative trade if

and only if they hold no common priors (Billot et al. 2000, see also Rigotti

et al. 2008). Thus observing the sets C̄ for two agents are disjoint yields fur-

ther, testable predictions about trade behavior. Similarly, in an economy of

MEU agents without aggregate uncertainty, the Pareto frontier precisely cor-

responds to the set of full-insurance allocations if and only if the agents share

at least one common prior (Billot et al. 2000). Thus observing the C sets

of a population have non-empty intersection not only yields welfare implica-

tions but in fact identifies the entire Pareto frontier, even while the individual

preferences themselves may remain unidentified.

6 Statistical Tests of M-Rationalizability

Suppose now we observe cross-sectional data {Y n}Nn=1, obtained by repeatedly

sampling noisy measurements of an individual’s compensation differences. For-

mally, for all {x, x′} ∈ E we assume there exists a fixed, non-stochastic ‘true’

compensation difference Y 0
xx′ = −Y 0

x′x. We assume the data {Y n}Nn=1 are a ran-

dom sample of N i.i.d. draws of the random flow Ỹ , where for each (i, j) ∈ E⃗
with i < j:

Ỹij = Y 0
ij + ϵij,

47Note that generally C will not itself define an MEU preference which rationalizes u.
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with (i) E(ϵij) = 0, and (ii) Var(ϵij) < +∞. We do not assume a priori that the

the noise shocks {ϵij} are uncorrelated or that they are distributed identically

across E .
We wish to test whether the vector of true compensation differences, Y 0,

is M-rationalizable against the full, multi-sided alternative:

H0 : Y
0 ∈ grad(KM), H1 : Y

0 ̸∈ grad(KM). (15)

In other words, we seek to test whether the vector of moments E(Ỹ ) belongs to

the closed, convex set grad(KM). Problems of this form have been well-studied

in the econometric literature (e.g. Chernozhukov et al. 2007; Andrews and

Guggenberger 2009; Hong and Li 2018; Kitamura and Stoye 2018; Fang and

Seo 2019) and off-the-shelf techniques are available for obtaining test statistics

and critical values.

Let Ȳ = 1
N

∑
n Y

n denote the sample average flow, and let ψ(Ỹ ) denote

the distance from a vector Ỹ to grad(KM).48 A generalization of the delta

method due to Fang and Santos (2019) guarantees that, underH0, the quantity√
Nψ(Ȳ ) converges in distribution to θ

(
N(0,Σ)

)
, where Σ is the covariance

matrix of the shock vector ϵ, and θ is a particular, non-linear function related

to ψ.49 The numerical derivative estimator of Hong and Li (2018) provides a

convenient method for simulating this distribution, without requiring further

analytic calculations.

1. For b = 1, . . . , BN , let Z
∗(b) =

√
BN

(
Ȳ ∗(b) − Ȳ

)
, where Ȳ ∗(b) is a draw of

the bootstrapped sample mean Ȳ ∗, given the data {Y 1, . . . , Y N}.

2. For all b = 1, . . . , BN , compute:

θ̂N
(
Z∗(b)) ≡ ψ

(
Ȳ + δNZ

∗(b))− ψ
(
Ȳ
)

δN
,

48That is,

ψ(Ỹ ) = min
F∈grad(KM)

∥∥Ỹ − F
∥∥
2
.

49Formally, θ is related to the Hadamard directional derivative of ψ evaluated at the true

Y0; see Fang and Santos (2019) for details.
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for a choice of sequence of tuning parameters δN satisfying limN δN = 0,

and limN δN
√
BN → ∞.

Letting Z∗ =
√
BN(Ȳ

∗ − Ȳ ) denote the re-scaled bootstrap mean conditional

upon the data, Theorem 3.1 of Hong and Li (2018) establishes the consistency

of θ̂(Z∗) for the asymptotic distribution θ
(
N(0,Σ)

)
.

Theorem (Hong and Li 2018). Under the above hypotheses,

lim
N→∞

θ̂N(Z
∗)

P
⇝ θ

(
N(0,Σ)

)
,

where
P
⇝ denotes weak convergence in probability conditional upon the data.

An α-level test of (15) can then be constructed by comparing
√
Nψ(Ȳ ) to 1−α

conditional quantile of θ̂(Z∗). This can be approximated using the empirical

distribution of {θ̂N
(
Z∗(b))}BN

b=1.

When KM is polyhedral, as is often the case in practice, Fang and Santos

(2019) provide a consistent, alternative estimator for θ
(
N(0,Σ)

)
. Their ap-

proach exploits the polyhedral structure of KM to directly estimate θ. Their

alternative has the added benefit of providing confidence regions for the set of

binding constraints at the true Y0,. This is valuable as these constraints often

have an axiomatic interpretation (e.g. Section 5.1). The interested reader is

referred to Section 4.2 of Fang and Santos (2019).

7 Conclusion

This paper provides a novel approach to quantifying the predictive accuracy

of various models of preference and individual decision-making. Our approach

makes particular use of a common, underlying invariance property of various

models to obtain cardinal measurements of preference intensity. The fine struc-

ture of this data forms the basis for the major recurring computational and

economic advantages of our approach enjoys over classical revealed preference

techniques.
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A natural follow-up to the theoretical foundations established in this pa-

per would be to take these techniques to the lab. Alternatively, while as a

practical matter it is often straightforward to obtain natural choices of vir-

tual numeraire for a given model (see Section 3.3), it would be of theoretical

interest to characterize which sets of preferences admit a virtual numeraire.

Such results may be of interest beyond decision theory and experiments. For

example, in the context of mechanism design, such a result would characterize

which type spaces of non-quasilinear preferences could be viewed as quasilinear

under an appropriate change of coordinates.

Finally, the computational tractability of our least squares theory makes

it a natural framework for considering asymptotic econometric problems. It

would be interesting to establish consistency of our best-fit estimators in the

presence of noise as (V , E) gets large, in the vein of Seijo and Sen (2011) or

Chambers et al. (2021). Similarly it would be of interest to study the testing

problem (15) as (V , E), rather than the cross-sectional dimension, grows large

in an appropriate sense.
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Appendices

Appendix A Proof of Theorem 1

Proof. Necessity is trivial. As such, let ≿∈ M be arbitrary, and suppose

{ϕα}α≥0 satisfies (N.1) - (N.3) for ≿. Fix an alternative x ∈ X and define:

c(x) =

α∗ if x ≿ x and ϕα∗(x) ∼ x

−α∗ if x ≻ x and ϕα∗(x) ∼ x.

This is well-defined by (N.2) and (N.3). We first show that c is ϕ-additive.

Consider c
(
ϕα(x)

)
for some x ∈ X, α ≥ 0. If x ≿ x, then by (N.3) there exists

αxx ≥ 0 such that x ∼ ϕαxx(x). By (N.1), ϕα(x) ∼ ϕα

(
ϕαxx(x)

)
= ϕαxx+α(x).

By (N.2), both ϕαxx+α(x) ≿ x and ϕαxx(x) ≿ x, hence:

c
(
ϕα(x)

)
= c

(
ϕαxx+α(x)

)
= αxx + α = c(x) + α.

Suppose instead x ≻ x. If |c(x)| ≥ α, then ϕ|c(x)|−α

(
ϕα(x)

)
∼ x, and hence

c
(
ϕα(x)

)
= −

(
|c(x)| − α

)
= c(x) + α. If instead α > |c(x)|, then by (N.1)

ϕα(x) = ϕα−|c(x)|
(
ϕ|c(x)|(x)

)
∼ ϕα−|c(x)|(x), and thus c

(
ϕα(x)

)
= α − |c(x)| =

c(x) + α. Thus for all x ∈ X, α ≥ 0, c
(
ϕα(x)

)
= c(x) + α and we conclude c

is ϕ-additive.

We now show c represents ≿. Let x ≿ x′. By (N.3) there exists αx′x ≥ 0

such that ϕαx′x
(x′) ∼ x. By (N.2) αx′x > 0 if and only if x ≻ x′. But since we

have already shown c is ϕ-additive:

c(x) = c
(
ϕαx′x

(x′)
)
= c(x′) + αx′x.

Thus c(x) ≥ c(x′), with strict inequality whenever x ≻ x′, and hence c repre-

sents ≿.

We now show c is continuous. As ≿ is continuous and admits a utility

representation c, by the Open Gap Lemma (Debreu 1964), we conclude ≿ also

admits a continuous utility representation w : X → R.50 Suppose xn → x.

50See also Chapter 9 Proposition 5.1 of Ok (2011).
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By (N.2) and (N.3), for some choice of α∗ ≥ 0 large enough, we have x̂n =

ϕα∗(xn) ≿ x for all n ∈ N, and x̂ = ϕα∗(x) ≿ x. By continuity, x̂n → x̂,

and w(x̂n) → w(x̂). But w(x̂n) = w
(
ϕc(x̂n)(x)

)
and w(x̂) = w

(
ϕc(x̂)(x)

)
. By

definition of a virtual commodity, the map (α, x) 7→ ϕα(x) is jointly continuous,

thus so is the map θ : R+ → X defined by θ(α) = ϕα(x). This implies w ◦ θ is

continuous and, by (N.2), strictly increasing. It follows that (w ◦ θ)
(
c(x̂n)

)
→

(w ◦ θ)
(
c(x̂)

)
implies that also c(x̂n) → c(x̂).51 Hence c(xn) → c(x) too, by

ϕ-additivity. As xn → x was arbitrary, we conclude that c is in fact continuous.

Finally, it is immediate that for any pair x ≿ x′, any two ϕ-additive repre-

sentations c and c′ of ≿ must satisfy:

c(x)− c(x′) = αx′x = c′(x)− c′(x′),

where αx′x ≥ 0 is the unique non-negative scalar such that ϕαx′x
(x′) ∼ x

guaranteed by (N.2) and (N.3). Thus c and c′ differ by at most an additive

constant.

Appendix B Proof of Theorem 2

B.1 Preliminaries

Let X be a metric space, and {ϕα}α≥0 a regular virtual commodity. A home-

omorphism between topological spaces is a continuous bijection with con-

tinuous inverse. A map is an embedding if it is a homeomorphism onto its

image. Let H : R+ × Y → X for some metric space Y . We say that H is

equivariant if:

H(α + β, y) = ϕβ

(
H(α, y)

)
51A continuous, strictly increasing function R+ → R is a homeomorphism onto its image

(by invariance of domain; e.g. Munkres 1974) and hence admits a continuous left-inverse.
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for all y ∈ Y and α, β ≥ 0. Note that if u : X → R is ϕ-additive, then

equivariance of H implies:

u
(
H(α, y)

)
= u

(
ϕα

(
H(0, y)

))
= u

(
H(0, y)

)
+ α

= v(y) + α

where v(y) ≡ u
(
H(0, y)

)
. Thus any equivariant homeomorphism H renders

every ϕ-additive utility quasilinear.

To state our next result, we first require the following lemma. It says that

the binary relation ∼⊴, defined via x ∼⊴ y if and only if either x ⊴ y or y ⊴ x,

is an equivalence relation.52

Lemma 1. Let {ϕα}α≥0 be a regular virtual commodity. Then ∼⊴ is an equiv-

alence relation.

In light of Lemma 1, there is a well-defined quotient space X/∼⊴. We let

q : X → X/∼⊴ denote the associated quotient map, and in all that follows, we

will consider X/∼⊴ endowed with its quotient topology; see Munkres (1974)

for definitions.

The following result is the central piece of technical machinery needed

for the proof of Theorem 2. A proof of this result may be found in Online

Appendix D.

Theorem 3 (Embedding Theorem). Let {ϕα}α≥0 be a regular virtual commod-

ity. Then X and {ϕα}α≥0 satisfy (A.1) and (A.2) if and only if there exists

an equivariant embedding H : R+ ×X/∼⊴ → X such that

q ◦H
(
α, [x]

)
= [x]

for all [x] ∈ X/∼⊴. Moreover the range of H is closed in X.

52Recall, x ⊴ y means that there exists some α ≥ 0 such that ϕα(x) = y.
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B.1.1 Proof of Theorem 2

Proof. It is immediate that (ii) implies (i), and by Theorem 1, (iii) =⇒ (ii).

Thus we first will show that (i) =⇒ (ii). Without loss of generality, suppose

(V , E) is connected, and let (V , E ′) be a spanning tree.53 Then for all xk ∈
V there exists a unique sequence {xj1 , xj2}, {xj2 , xj3}, . . . , xjMk−1

, xjMk
} ∈ E ′,

where j1 = 1 and jMk
= k. Define:

ūk =

Mk−1∑
m=1

Yjkjk+1

It is straightforward that (i) implies ūk does not depend on the choice of

spanning tree: if two different choices yielded different values for some k, they

must obtain a value for xk by summing along different paths. But then the two

paths from x1 to xk would define a loop around which the adding-up condition

(i) fails. Thus ū is well-defined, and it is immediate that grad ū = Y .

We now show (ii) =⇒ (iii). By Theorem 3, there exists an equivariant

embedding H : R+ × X/∼⊴ → X, whose range XH is closed in X, and

intersects every ∼⊴-equivalence class. Following the notation of the Online

Appendix D, let (t, qH) : XH → R+ ×X/∼⊴ denote the continuous inverse of

H. Note that qH is simply the restriction of the quotient map q : X → X/∼⊴
to XH .

Suppose now that Y ∈ F is a gradient flow. Then there exists a vector

ū ∈ U such that grad ū = Y . Since the gradient of any constant vector is zero,

we may assume, without loss of generality, that ū is component-wise positive.

We may similarly assume without loss that V ⊊ XH .
54 Define l : V → R+ via

l(xi) = t(xi) +
(
∥ū∥∞ − ūi

)
. By definition of an experiment, V and qH(V) are

in one-to-one correspondence, hence we may equivalently regard l as a map

from qH(V) → R+.

53If (V, E) is not connected, our argument is valid applied to each connected component

independently.
54If it is not, since XH intersects every ∼⊴ equivalence class and V is finite, there exists

some α∗ > 0 such that ϕα∗(V) ⊆ XH , and we may equivalently just work with this set of

‘translates.’
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By (A.1), there exists a cross section s for X and {ϕα}α≥0. By the universal

property of the quotient (e.g. Munkres 1974), there is a map s∗ : X/∼⊴ → X

such that s = s∗ ◦ q. By definition of a cross section, q ◦ s∗ = idX/∼⊴ , thus q

is a left inverse of s∗; since X/∼⊴ carries the quotient topology, q is contin-

uous, hence s∗ is open. Since s∗ is injective by definition of a cross section,

it is a homeomorphism from X/∼⊴ to a subspace of the metric space X, and

therefore X/∼⊴ is metrizable, which implies it is normal. The Tietze exten-

sion theorem, e.g. Munkres (1974), then guarantees there exists a bounded,

continuous function L : X/∼⊴ → R+ such that L|q̄(V) = l.

Let epi(L) denote the epigraph of L, by minor abuse of notation regarded

as a subset of R+ ×X/∼⊴.55 We define a binary relation on X in three cases:

first, if x, x′ ∈ H
(
epi(L)

)
⊆ XH , then let x ≿ x′ if and only if t(x) − t(x′) ≥

(L◦qH)(x)− (L◦qH)(x′). If x but not x′ belong to H
(
epi(L)

)
, then let x ≻ x′.

Finally, if neither x nor x′ belong to H
(
epi(L)

)
, then let x ≿ x′ if and only if

min{α ≥ 0 : ϕα(x
′) ∈ H

(
epi(L)

)
} ≥ min{α ≥ 0 : ϕα(x) ∈ H

(
epi(L)

)
}.56

Clearly ≿ is complete. We now show that it is transitive and hence a

preference relation. Let x ≿ x′ and x′ ≿ x′′, and suppose first that x, x′, x′′ ∈
H
(
epi(L)

)
. Then:

t(x)− t(x′) ≥ (L ◦ qH)(x)− (L ◦ qH)(x′)

and

t(x′)− t(x′′) ≥ (L ◦ qH)(x′)− (L ◦ qH)(x′′).

By summing, we obtain:

t(x)− t(x′′) ≥ (L ◦ qH)(x)− (L ◦ qH)(x′′),

and thus x ≿ x′′. If instead x, x′ ∈ H
(
epi(L)

)
but x′′ is not, then it is

immediate that x ≿ x′′. Moreover, by construction it is impossible that x′, x′′ ∈
H
(
epi(L)

)
but x is not, as x ≿ x′ by hypothesis. Thus finally suppose that

55The epigraph of L is the set
{
([x], τ) ∈ X/∼⊴×R+ : τ ≥ L([x])

}
. Here, we just reverse

the order of the coordinates.
56As the range of H intersects every ∼⊴ equivalence class, both sets are non-empty, as

well as closed and bounded below, which ensures the right-hand inequality is well-defined.
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x, x′, x′′ ̸∈ H
(
epi(L)

)
. But then x ≿ x′′ by the transitivity of the usual order

on R+. Thus ≿ is transitive and hence a preference relation.

We now establish that ≿ is continuous. First, let x ∈ H
(
epi(L)

)
. If x′ ≿ x,

then x′ ∈ H
(
epi(L)

)
⊆ XH necessarily, and hence:

{x′ ∈ X : x′ ≿ x} =
{
x′ ∈ XH : t(x′)− t(x) ≥ (L ◦ qH)(x′)− (L ◦ qH)(x)

}
= H

(
epi(L+ η)

)
,

where the non-negative scalar η ≡ t(x)− (L ◦ qH)(x) ≥ 0. As L is continuous,

epi(L+η) is a closed subset of R+×X/∼⊴. As H is an embedding, H
(
epi(L+

η)
)
is closed in XH ; by Theorem 3 XH is closed in X and hence H

(
epi(L+η)

)
is closed in X as well. Similarly,

{x′ ∈ X : x′ ≻ x} =
{
x′ ∈ XH : t(x′)− t(x) > (L ◦ qH)(x′)− (L ◦ qH)(x)

}
= H

(
int epi(L+ η)

)
,

is open in X̄. To show this set is open in X, we rely on the following claim.

Claim: The set
{
x ∈ X : x ⊴ H

(
0, q(x)

)}
is closed.

Proof. Suppose this is not the case. Then there exists xn → x,

where xn ⊴ H
(
0, q(xn)

)
for all n ∈ N, and x ▷ H

(
0, q(x)

)
.57 Thus

for all n ∈ N there exists αn ≥ 0 such that ϕαn(xn) = H
(
0, q(xn)

)
,

and α > 0 such that ϕα

(
H
(
0, q(x)

))
= x. By equivariance of H,

we have that x = H
(
α, q(x)

)
and, for all n ∈ N, that ϕα+αn(xn) =

H
(
α, q(xn)

)
. By continuity, H

(
α, q(xn)

)
→ H(α, q(x)

)
and hence

limn→∞ ϕα+αn(xn) = x. If any subsequence of α+ αn converges to

some limit ᾱ ≥ α > 0, then ϕᾱ(x) = x, violating regularity of the

virtual commodity. Thus α + αn → ∞, as it is bounded below.

Then, for all ε > 0 there exists Nε ∈ N such that, for all n ≥ Nε we

have that both: (i) xn ∈ Bε(x) and (ii) ϕα+αn(xn) ∈ Bε(x), where

α + αn may be chosen to be arbitrarily large. This violates (A.2),

a contradiction.

57This last claim follows via Theorem 3 as it guarantees that q ◦H
(
α, q(x)

)
= q(x) for all

x ∈ X, α ≥ 0 and hence x ∼⊴ H
(
0, q(x)

)
but ¬ x ⊴ H

(
0, q(x)

)
.
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In light of this claim, H
(
R++ ×X/∼⊴

)
=

{
x ∈ X : x ⊴ H

(
0, q(x)

)}c
is open

in X, and since H
(
int epi(L + η)

)
⊆ H

(
R++ × X/∼⊴

)
, it too is open in X.

Thus its complement, {x′ ∈ X : x ≿ x′}, is closed.
Suppose now that x ̸∈ H

(
epi(L)

)
, and define αx ≡ min{α ≥ 0 : ϕα(x) ∈

H
(
epi(L)

)
}. Then ϕαx(x) = H

(
(L ◦ q)(x), q(x)

)
, hence:

{x′ ∈ X : x′ ≿ x} = {x′ ∈ H
(
epi(L)

)c
: x′ ≿ x} ∪H

(
epi(L)

)
= {x′ ∈ H

(
epi(L)

)c
: αx ≥ αx′} ∪H

(
epi(L)

)
=

{
x′ ∈ H

(
epi(L)

)c
: x′ ∈ ϕ−1

αx

(
H
(
epi(L)

))}
∪H

(
epi(L)

)
= ϕ−1

αx

(
H
(
epi(L)

))
,

where the third equality follows from the equivariance of H, and the fourth

from the fact that ϕ−1
αx

(
H
(
epi(L)

))
is closed under {ϕα}α≥0 (also by equivari-

ance of H). Since ϕαx is continuous and H
(
epi(L)

)
has already been shown to

be closed, we conclude {x′ ∈ X : x′ ≿ x} is closed. By an analogous argument,

we obtain that {x′ ∈ X : x′ ≻ x} is open, and hence {x′ ∈ X : x ≿ x′} is

closed. Thus ≿ is continuous.

We now verify ≿ obeys (N.1) - (N.3). Suppose then that x ≿ x′, and let

α ≥ 0. If x, x′ ∈ H
(
epi(L)

)
, then, as ϕα(x) = ϕα+t(x)

(
H(0, q(x))

)
:

(t ◦ ϕα)(x)− (t ◦ ϕα)(x
′) = (t ◦ ϕα+t(x))

(
H(0, qH(x))

)
− (t ◦ ϕα+t(x′))

(
H(0, qH(x

′))
)

= (t ◦H)(α + t(x), qH(x))− (t ◦H)(α + t(x′), qH(x
′))

= t(x)− t(y)

≥ (L ◦ qH)(x)− (L ◦ qH)(y)

= (L ◦ qH ◦ ϕα)(x)− (L ◦ qH ◦ ϕα)(x
′)

where the inequality follows from x ≿ x′ with x, x′ ∈ H
(
epi(L)

)
. Thus ϕα(x) ≿

ϕα(x
′), as both belong to H

(
epi(L)

)
by equivariance of H. Suppose now x but

not x′ belongs to H
(
epi(L)

)
, and thus that x ≻ x′. Then for all 0 ≤ α < αx′ ,

by definition ϕα(x) ≻ ϕα(x
′). Suppose then that α ≥ αx′ . By Lemma 4

(t◦ϕα)(x) = t(x)+α, where t(x) ≥ (L◦qH)(x). Similarly, since x′ ̸∈ H
(
epi(L)

)
,
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(t ◦ ϕα)(x
′) < (L ◦ q)(x′) + α. Hence:

(t ◦ ϕα)(x)− (t ◦ ϕα)(x
′) = t(x) + α− (t ◦ ϕα)(x

′)

≥ (L ◦ qH)(x) + α− (t ◦ ϕα)(x
′)

> (L ◦ qH)(x)− (L ◦ q)(x′)

= (L ◦ qH ◦ ϕα)(x)− (L ◦ qH ◦ ϕα)(x
′),

and hence ϕα(x) ≻ ϕα(x
′). Finally, suppose neither x nor x′ belong to

H
(
epi(L)

)
. Let x ≿ x′ and hence αx′ ≥ αx. For any α < αx, if x̃ = ϕα(x), we

have that αx̃ = αx − α, hence for any such α, it follows that ϕα̃(x) ≿ ϕα̃(x
′).

If α ≥ αx, then ϕα(x) ∈ H
(
epi(L)

)
; if ϕα(x

′) is not, then ϕα(x) ≻ ϕα(x
′) as

desired. If ϕα(x
′) ∈ H

(
epi(L)

)
too, then:

(t ◦ ϕα)(x)− (t ◦ ϕα)(x
′) ≥ (t ◦ ϕα)(x)− (t ◦ ϕα)(x

′) + αx − αx′

= (L ◦ qH ◦ ϕα)(x)− (L ◦ qH ◦ ϕα)(x
′),

and thus ≿ satsifies (N.1). Property (N.2) holds by definition. Thus now

suppose x′ ≿ x. Then ϕαx(x), ϕαx(x
′) ∈ H

(
epi(L)

)
, thus, having verified (N.1)

it suffices to find some α such that ϕα+αx(x) ∼ ϕαx(x
′). Let α = (t◦ϕαx)(x

′)−
(L ◦ qH ◦ ϕαx)(x

′).58 Since (t ◦ ϕαx)(x) = (L ◦ qH ◦ ϕα+αx)(x), it follows that:

(t ◦ ϕα+αx)(x)− (t ◦ ϕαx)(x
′) = α + (t ◦ ϕαx)(x)− (t ◦ ϕαx)(x

′)

= α + (L ◦ qH ◦ ϕα+αx)(x)− (t ◦ ϕαx)(x
′)

= (L ◦ qH ◦ ϕα+αx)(x)− (L ◦ qH ◦ ϕαx)(x
′),

thus ϕα+αx(x) ∼ ϕαx(x
′) as desired, and we conclude ≿ satisfies (N.3).

We now verify that the compensation differences under ≿ for each pair in

E precisely corresponds to the observed data, our last outstanding claim. Let

Yij ≥ 0. Suppose first xi, xj ∈ H
(
epi(L)

)
. Since xi, xj ∈ V , by construction

(L ◦ qH)(xi) = l(xi) +
(
∥u∥∞ − ui

)
and likewise xj. Thus

t(xj)− (t ◦ ϕYij
)(xi) = t(xj)− t(xi)− Yij

= t(xj)− t(xi)− (uj − ui)

= (L ◦ qH)(xi)− (L ◦ qH ◦ ϕYij
)(xj)

58Note this is well-defined as ϕαx
(x′) ∈ H

(
epi(L)

)
.
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and hence xi ∼ ϕYij
(xj). If xi or xj do not belong to H

(
epi(L)

)
, as ≿ satisfies

(N.1), it suffices to verify that:

ϕYij+max{αxi ,αxj }(xi) ∼ ϕmax{αxi ,αxj }(x).

However, by construction both these alternatives belong to H
(
epi(L)

)
, and

hence the preceding argument applies directly. Thus (i) =⇒ (ii). The

theorem follows.

Appendix C Proposition Proofs

C.1 Proof of Proposition 2

Proof. By the Pythagorean theorem:∥∥Y − Y ∗
M
∥∥2

2
=

∥∥Y − Y ∗
Add

∥∥2

2
+ ∥Y ∗

Add − Y ∗
M
∥∥2

2
(16)

and, letting Πgrad(KM) denote L
2 projection onto grad(KM),∥∥Y − Πgrad(KM)Y

∗
Add

∥∥2

2
=

∥∥Y − Y ∗
Add

∥∥2

2
+ ∥Y ∗

Add − Πgrad(KM)Y
∗
Add

∥∥2

2
. (17)

As Y ∗
M is the nearest point in KM to Y , the fact Πgrad(K)Y

∗
Add ∈ grad(KM)

implies: ∥∥Y − Πgrad(KM)Y
∗
Add

∥∥2

2
≥

∥∥Y − Y ∗
M
∥∥2

2

and hence by (16) and (17),

∥Y ∗
Add − Πgrad(KM)Y

∗
Add

∥∥2

2
≥ ∥Y ∗

Add − Y ∗
M
∥∥2

2
. (18)

But analogously, Πgrad(KM)Y
∗
Add must be the nearest point to Y ∗

Add in grad(KM),

hence (18) holds with equality. As the L2 norm is strictly convex, this means

Πgrad(KM)Y
∗
Add = Y ∗

M, and substituting into (16) yields the desired equation.
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C.2 Proof of Proposition 3

Proof. For a pure cycle C, MP (C) = ∥C∥1. Thus if R =
∑

l Cl for some

{C1, . . . , CL} ∈ D(R), then by the triangle inequality:

∥R∥1 =
∥∥∥∥ L∑

l=1

Cl

∥∥∥∥
1

≤
L∑
l=1

∥∥Cl

∥∥
1
=

L∑
l=1

MP (Cl).

By taking infimums across all such decompositions, it follows ∥R∥1 ≤MP ∗(R).

Thus it suffices to show that there always exists a decomposition in D(R)

attaining this lower bound.

Without loss of generality, suppose R ≥ 0 componentwise.59 If R = 0

then trivially MP ∗(R) = ∥R∥1 = 0, hence suppose R ̸= 0. Let E ′ denote

the non-empty subset of edges on which R ̸= 0, and let V ′ denote the set

of vertices appearing in some edge in E ′. Choose xi0 ∈ V ′ arbitrarily. Since

xi0 ∈ V ′, by (8) there exists a neighboring vertex xi1 such that Rxi0
xi1

> 0.

Proceeding in this fashion, we may construct a sequence of oriented edges in

E⃗ ′ such that Rxil
xil+1

> 0. We terminate this process when we choose a vertex

that has appeared prior in the sequence.60 By possibly throwing out some

initial segment of this sequence and relabelling indices, we obtain a sequence of

oriented edges (xi0 , xi1), (xi1 , xi2), . . . , (xiL1
, xi0) such that Rxil

xil+1
> 0, where

iL ≡ i0. Let c1 = min{Rxi0
xi1
, Rxi1

xi2
, . . . , RxiL−1

xi0
}, and let C1 denote the

pure cycle
∑L

l=0 c11(xil
,xil+1

). Then 0 ≤ C1 ≤ R component-wise, and C1 is

equal to R on at least one component. Thus R1 = R − C1 also belongs to

the positive cone of the subspace satisfying (8); however it is non-zero on a

proper subgraph of (V ′, E ′). Thus repeating this process, we obtain a finite

decomposition of R into pure cycles C1+ · · ·+CM , where for all m = 1, . . . ,M ,

Cm ≥ 0. This implies:

∥R∥1 =
∥∥∥∥ M∑

m

Cm

∥∥∥∥
1

=
M∑

m=1

∥∥Cm

∥∥
1
=

M∑
m=1

MP (Cm)

59This simply amounts to a choice of orientation of each edge forming our basis for F in

the same direction as the flow (if the flow is non-zero).
60This process necessarily terminates, as V ′ is finite.
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and hence the lower bound obtains.

C.3 Proof of Proposition 4

Proof. Any preference in MMEU may be uniquely identified with its set of

priors C ⊆ ∆(S). Given a closed, convex set of priors C satisfying (i) and

(ii) for some u, π1, . . . , πK , let π̂1, . . . , π̂K ∈ C denote selections of extremal

points from C belonging to the respective hyperplanes H̄ũi,ui
. Then trivially

u, π̂1, . . . , π̂K belong to KMEU , and must be consistent with u, π1, . . . , πK as u

is the same in both vectors.

Conversely, given some set of priors C that is consistent with u, π1, . . . , πK ,

suppose for purposes of contraposition that there exists π∗ ∈ C, π∗ ̸∈ C̄, then

for some i:

⟨π∗, ũi⟩ < ui,

and hence ui ̸= U(ũi), where U is the MEU functional associated with C.

Thus if C is consistent with u, π1, . . . , πK , C must satisfy (i). For (ii), if for

all i = 1, . . . , K:

ui = U(ũi) = min
π∈C

⟨π, ũi⟩,

then H̄ũi,ui
must be a supporting hyperplane for C and hence must contain

some extremal point.

Appendix D Proof of Theorem 3

Proof of Lemma 1

Proof. Clearly ∼⊴ is reflexive and symmetric, hence all that remains is to

verify transitivity. Suppose x ∼⊴ x′ and x′ ∼⊴ x′′. We proceed in three cases:

first suppose that only one of x and x′′ may be obtained from x′; without

loss x ⊴ x′ ⊴ x′′. Then there exists αxx′ , αx′x′′ ≥ 0 such that ϕαxx′
(x) = x′

and ϕαx′x′′
(x′) = x′′ then clearly ϕαxx′+αx′x′′

(x) = x′′ and hence x ⊴ x′′. Thus

suppose x′ ⊴ x and x′ ⊴ x′′. Then there exists αx′x, αx′x′′ ≥ 0 such that

ϕαx′x
(x′) = x and ϕαx′x′′

(x′) = x′′. Without loss of generality let αx′x ≤ αx′x′′ ,
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so ϕαx′x′′−αx′x

(
ϕαx′x

(x′)
)
= x′′ and thus ϕαx′x′′−αx′x

(x) = x′′, and we obtain

x ∼⊴ x′′. Finally, suppose x ⊴ x′ and x′′ ⊴ x′. Then there exists αxx′ , αx′′x′ ≥ 0

such that ϕαxx′
(x) = x′ = ϕαx′′x′

(x′′). Without loss, let αxx′ ≤ αx′′x′ . Then x′ =

ϕαx′′x′
(x′′) = ϕαxx′+(αx′′x′−αxx′ )

(x′′), which in turn equals ϕαxx′

(
ϕαx′′x′−αxx′

(x′′)
)
.

But, by regularity, the map ϕαxx′
is injective hence, ϕαx′′x′−αxx′

(x′′) = x and

therefore x ∼⊴ x′′.

In light of Lemma 1, there is a well-defined quotient space X/∼⊴. We let

q : X → X/∼⊴ denote the associated quotient map, and in all that follows, we

will consider X/∼⊴ endowed with its quotient topology; see Munkres (1974)

for definitions.

Corollary 1. For all α ≥ 0, for all x ∈ X, q(x) = (q ◦ ϕα)(x).

The quotient map q has the property that if f : X → Z is any map that

is constant on each ∼⊴ equivalence class, then there is a uniquely determined

map f ∗ : X/∼⊴ → Z such that f ∗(q(x)) = f(x) for all x ∈ X.61 In particular,

every cross section s : X → X may equivalently be regarded as a map s :

X/∼⊴ → X. Going forward, whenever we refer to a cross section s we will

mean it in this latter sense. To conserve on notation, we will reserve the use

of y to denote elements of X/∼⊴.
We now fix a regular virtual commodity {ϕα}α≥0 that satisfies (A.1) and

(A.2), and a choice of cross section s. Define H : R+ × X/∼⊴ → X via

H(α, y) = (ϕα ◦ s)(y), and let XH = range(H). We wish to show that H is an

equivariant embedding. Note that equivariance follows immediately from the

definition of H:
ϕβ

(
H(α, y)

)
= ϕβ

(
(ϕα ◦ s)(y)

)
= (ϕβ+α ◦ s)(y)

= H(β + α, y).

Thus it remains to verify that H is indeed an embedding.

Lemma 2. Let qH : XH → X/∼⊴ be the restriction of q to XH . Then qH is

an open map.

61See Munkres (1974) for details.

52



Proof. Let U ⊂ XH be open. Then:

qH(U) =
{
y ∈ X/∼⊴ : ∃α ≥ 0 s.t. (ϕα ◦ s)(y) ∈ U

}
= s−1

(
{x ∈ range(s) : ∃α ≥ 0 s.t. ϕα(x) ∈ U}

)
= s−1

(
range(s) ∩

[
∪α≥0 ϕ

−1
α (U)

])
= s−1

(
∪α≥0 ϕ

−1
α (U)

)
.

But, s and {ϕα}α≥0 are continuous, hence qH(U) is open.

Lemma 3. H is injective.

Proof.

H(α, y) = H(α′, y′)

=⇒ (ϕα ◦ s)(y) = (ϕ′
α ◦ s)(y′)

=⇒ (q ◦ ϕα ◦ s)(y) = (q ◦ ϕ′
α ◦ s)(y′)

=⇒ (q ◦ s)(y) = (q ◦ s)(y′)

=⇒ s(y) = s(y′).

This implies that y = y′ as s is a cross section, and that α = α′ by regularity.

Define t : XH → R+ implicitly, as the unique solution to

H
(
t(x), qH(x)

)
= x.

It is well-defined in light of the equivariance of H and regularity of {ϕα}α≥0.

By definition, (t, qH) is the inverse of H. We now establish the regularity

(i.e. continuity) of solutions to the above class of topological implicit function

problems (Lemma 5 - Lemma 7).

Lemma 4. For all x ∈ XH , α ≥ 0, the function t satisfies (t◦ϕα)(x) = t(x)+α.

Proof. Let x ∈ XH . By definition, H
(
t(x), qH(x)

)
= x, and by equivariance,

H
(
t(x) + α, qH(x)

)
= (ϕα ◦ H)(t(x), qH(x)) = ϕα(x). Hence (t ◦ ϕα)(x) =

(t ◦H)
(
t(x) + α, qH(x)

)
= t(x) + α.
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Lemma 5. For all x ∈ XH there exists a finite open cover {Nαi
}Ki=1 of

H
(
[0, t(x)]× {qH(x)}

)
with the following properties:

1. For all i ∈ {1, . . . , K}, the set {α : H(α, q̄(x)) ∈ Nαi
} is a relatively

open interval of [0,∞). For i > 1, denote this by (αi, ᾱi), and for i = 1,

by [0, ᾱ1).

2. The indices {αi}Ki=1 satisfy 0 = α1 < α2 < · · · < αK = t(x), satisfy

αi ∈ (αi, ᾱi), and, for all i, j = 1, . . . , K, αi < αj implies (αi, ᾱi) ⪯SSO

(αj, ᾱj), where ≺SSO denotes the strong set order.

3. For all i, Nαi
satisfies the no accumulation property of (A.2).

Proof. Fix x ∈ XH . For all α ∈ [0, t(x)], define xα = H(α, qH(x)) = (ϕα ◦ s ◦
qH)(x). By (A.2), for all α ∈ [0, t(x)], there exists εα, Tα > 0 such that, for

all x′ ∈ Bεα(xα), for all β > Tα, ϕβ(x
′) ̸∈ Bεα(xα). For each α, let Uα denote

the connected component of Bεα(xα) ∩ H
(
[0, t(x)] × {qH(x)}

)
that contains

xα, and define Nα = Bεα(xα) \
[
H
(
[0, t(x)] × {qH(x)}

)
\ Uα

]
. As [0, t(x)] ×

{qH(x)} is compact in R+ × X/∼⊴, by continuity H
(
[0, t(x)] × {qH(x)}

)
is

a compact and hence closed subset of XH . Uα is a relatively open subset of

H
(
[0, t(x)] × {qH(x)}

)
, hence H

(
[0, t(x)] × {qH(x)}

)
\ Uα is relatively closed

in s̄
(
[0, t(x)] × {q̄(x)}

)
and therefore also closed in X̄. Then for all α, Nα

is an open neighborhood of xα. By Lemma 3, H
(
· , qH(x)

)
is injective (and

continuous) hence for all α, {α′ : H
(
α′, qH(x)

)
∈ Nα} is an open interval in

[0, t(x)].

As H
(
[0, t(x)] × {qH(x)}

)
is compact and covered by {Nα}α∈[0,t(x)], there

exists a finite set 0 = α1 < · · · < αK = t(x) such that {Nαi
}Ki=1 form a

finite subcover. By construction, for each i, αi ∈ (αi, ᾱi). Since properties

(1.) and (3.) held for every element of {Nα} they clearly hold for {Nαi
}.

Finally, without loss of generality we may suppose, for all i ̸= j, the intervals

(αi, ᾱi) ̸⊆ (αj, ᾱj), as if not, then some proper subcover does, and passing to

this subcover preserves properties (1.) and (3.).

It remains only to verify {Nαi
} has the property that αi < αj implies

(αi, ᾱi) ⪯SSO (αj, ᾱj). Since neither interval contains the other, if αi < αj,
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R+

s
(
X/∼⊴

)
XH

xx2

x1

Nα1

Nα2

Nα3

(a) An open cover of the path

H
(
[0, t(x)]× {qH(x)}

)
, here in aqua-

marine. This open cover satisfies all

of the properties of Lemma 5.

R+

s
(
X/∼⊴

)
XH

x

Nα1

Nα2

Nα3

V3

(b) The construction of the neigh-

borhood VK (here, K = 3) for x on

which t is bounded, from the open

cover {Nαi}3i=1.

Figure 5: An illustration of the construction underpinning Lemma 6. We have implicitly

drawn the numeraire-paths of ϕ in X̄ as vertical translates of one another.

then it must be that ᾱi < ᾱj, which implies (αi, ᾱi) ⪯SSO (αj, ᾱj) as desired.
62

If instead αj < αi, then ᾱj < ᾱi, in which case (αj, ᾱj) ⪯SSO (αi, ᾱi), and

hence αi, αj ∈ (αi, ᾱi) ∩ (αj, ᾱj). Thus swapping the labels of Nαi
and Nαj

preserves all salient properties but ‘fixes’ violations of property (2.). Repeating

this process for each such pair cannot cycle (it simply sorts the indices via the

{αi}) and thus it terminates after some finite number of label swaps, resulting

in a cover satisfying (2.).

Lemma 6. For all x ∈ XH there exists an open neighborhood of x on which t

is bounded.

Proof. Fix x ∈ XH , and let {Nαi
}Ki=1 denote an open cover of H

(
[0, t(x)] ×

{qH(x)}
)
of the form guaranteed by Lemma 5. Without loss of generality,

suppose that Nα1 is the sole cover element to intersect H
(
{0} × X/∼⊴

)
.63

62Note that as no interval in the collection is a subset of any other, it can never be the

case that αi = αj or ᾱi = ᾱj , thus considering only strict inequalities suffices.
63For example, for all i > 1, redefine N ′

αi
= Nαi

\ range(s). N ′
αi

is open as range(s)

is closed: let (xn) ∈ range(s) and suppose xn → x. Then q(xn) → q(x), and hence

(s ◦ q)(xn) → (s ◦ q)(x) by continuity. However, s is a cross-section thus, as xn ∈ range(s),
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Define V0 = H
(
{0} ×X/∼⊴

)
and, for all i = 1, . . . , K:

Vi = Nαi

⋂[(
q−1
H ◦ qH

)(⋃
j<i

Vj ∩Nαi

)]
,

see Figure 5. We first verify, for all i = 1, . . . , K, that Vi is open. Note

that via Lemma 2 and our assumption that Nα1 is the only element of the

open cover to intersect V0, it suffices to show that V1 is open. But V1 =

Nα1 ∩
(
q−1
H ◦ qH

)
(V0 ∩ Nα1), and V0 ∩ Nα1 = Nα1 ∩ range(s), and hence is

relatively open in the range of s. As qH is a left-inverse of s, qH(Nα1 ∩ V0) is
open, and hence so too is V1.

We now establish that, for all i = 1, . . . , K, H
(
[0, ᾱi)×{qH(x)}

)
⊆

⋃
j≤i Vj,

where we recall that (αi, ᾱi) = {α ∈ [0, t(x)] : H(α, q̄(x)) ∈ Nαi
} for 1 <

i < K, and [0, ᾱi) is the analogue for i = 1.64 For all i = 1, . . . , K, let

xαi
= H(αi, q̄(x)) and consider the case of i = 1. By hypothesis, α1 = 0, hence

xα1 = (s◦qH)(x) ∈ Nα1∩V0. Then Corollary 1 impliesH
(
[0, t(x)]×{qH(x)}

)
⊆

(q−1
H ◦ qH)(Nα1 ∩ V0), and thus H

(
[0, ᾱ1) × {qH(x)}

)
⊆ V1. Suppose now

that, for all 1 ≤ i ≤ k, that H
(
[0, ᾱi) × {q̄(x)}

)
⊆

⋃
j≤i Vj, but, for sake

of contradiction, that H
(
[0, ᾱk+1) × {qH(x)}

)
̸⊆

⋃
j≤k+1 Vj. As (αk+1, ᾱk+1)

is an interval, if ᾱk ∈ (αk+1, ᾱk+1), the contradiction hypothesis would be

false, thus it must be that ᾱk ̸∈ (αk+1, ᾱk+1) and hence H(ᾱk, q̄(x)) ̸∈ Nαk+1
.

Then (αk, ᾱk) ∩ (αk+1, ᾱk+1) = ∅. But Lemma 5 guarantees that, for all

l > k+1, αl > αk+1, and for all l < k, ᾱl < ᾱk, hence H(ᾱk, q̄(x)) ̸∈
⋃K

i=1Nαi
,

contradicting the fact that {Nαi
}Ki=1 is a cover for H

(
[0, t(x)]×{qH(x)}

)
. Thus

by induction H
(
[0, ᾱK) × {qH(x)}

)
⊆

⋃
j≤K Vj, and in particular x = xαK

∈
VK .

We now verify that t|Vi
is bounded for all i = 0, . . . , K; since x ∈ VK and

VK is open, this suffices to establish the claim. For i = 0 the claim is trivial

as by definition, t|V0 is uniformly 0. Thus consider i = 1, let x′ ∈ V1. By

Lemma 4, for any x′ ∈ V1, if ϕα(x
′) = x′, then t(x′) = α + t(x′). But since

xn must be the value s takes at q(xn), hence (s ◦ q)(xn) = xn for all n. As X is metric and

hence Hausdorff and as xn converges to both x and (s ◦ q)(x), (s ◦ q)(x) must equal x, and

thus x ∈ range(s).
64This set is indeed an interval by Lemma 5.
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Nα1 has a no-loitering bound of Tα1 , since both x′, x′ ∈ V1 ⊆ Nα1 , we have

t(x′) < Tα1+t(x
′). However, if x′ ∈ V1, then (s◦qH)(x′) ∈ V1, and by definition

(t ◦ s ◦ qH)(x′) = 0. Thus for all x′ ∈ V1, t(x
′) < Tα1 . Suppose now that, for

all i ≤ k, t|Vi
is bounded, and let x′ ∈ Vk+1. Then, x

′ ∈ Nαk+1
and there exists

some x′′ ∼⊴ x′, where x′′ ∈ Nαk+1
∩ Vj where 1 ≤ j ≤ k. Suppose x′′ ⊴ x′.

Then:
t(x′) < t(x′′) + Tαk+1

< T̄j + Tαk+1

≤ max
i≤k

T̄i + Tαk+1
,

where Tαk+1
is a (A.2) bound for Nαk+1

, and T̄j is any upper bound on t|Vj

which exists by the induction hypothesis. Note that if x′ ⊴ x′′, then t(x′) is

bounded above by the same quantity. Thus for all 1 ≤ i ≤ K, t|Vi
is bounded;

as x ∈ VK and VK is open, this establishes the claim.

Lemma 7. The map t is continuous.

Proof. Let x ∈ XH . By Lemma 6, there exists ε > 0 such that t|Bε(x) is

bounded above by some constant K. Define t∗ : Bε(x)⇒ R+ via

t∗(x′) = argmin
t̃∈[0,K]

dX
(
(ϕt̃ ◦ s ◦ qH)(x′), x′

)
,

for x′ ∈ Bε(x). Since t(x′) is the unique unconstrained minimizer of this ob-

jective function, and t(x′) ∈ [0, K], it follows that t∗ = t|Bε(x) and hence t∗

is a singleton-valued correspondence. But by the Theorem of the Maximum

(Aliprantis and Border, 2006), t∗ is upper hemicontinuous and hence contin-

uous as a function. Thus for every x ∈ XH there is a neighborhood of x on

which it is continuous, hence it is continuous.

Corollary 2. Suppose {ϕα}α≥0 is a regular virtual commodity satisfying (A.1)

and (A.2). Then H is an equivariant embedding.

Proof of Theorem 3

Proof. By Corollary 2, H is an equivariant embedding and by definition, satis-

fies the desired identity. Suppose then, for sake of contradiction, thatXH is not
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closed in X. Then there exists a convergent sequence xn ∈ range(H), xn → x

with x ̸∈ range(H). By construction, for every x ∈ X, x ∼⊴ H
(
0, q(x)

)
=

(s◦q)(x); since H
(
0, q(x)

)
⊴ x implies x ∈ XH by equivariance, it follows that

x ◁ H
(
0, q(x)

)
. Thus there exists α∗ > 0 such that ϕα∗(x) = H

(
0, q(x)

)
. By

continuity, ϕα∗(xn) → ϕα∗(x), and thus (t ◦ ϕα∗)(xn) → (t ◦ ϕα∗)(x) = 0. By

Lemma 4, for all n ∈ N, the sequence (t ◦ ϕα∗)(xn) = t(xn) + α∗, is bounded

away from zero by α∗, a contradiction. Thus XH is closed.

For necessity, suppose an equivariant embeddingH with the requisite prop-

erties exist. It is immediate that (A.2) holds for {ϕα}α≥0 and that H
(
0, q(·)

)
defines a cross section.

Appendix E Dominant Strategy Elicitation of

Compensation Data

In this section we present a dominant-strategy incentive-compatible mecha-

nism to truthfully elicit compensation differences data. Our approach may be

seen as a generalization of Becker et al. (1964). For simplicity, we will consider

the elicitation problem for a given observation; our results extend to full exper-

iments straightforwardly. Let {x, x′} ∈ E be an arbitrary pair of alternatives.

We first define two intermediate mechanisms: in the x-mechanism, the agent

is offered the opportunity to submit a non-negative ‘sell price’ in numeraire

units for x, denoted s, to a computerized buyer. The buyer simultaneously

and blindly selects a non-negative ‘buy’ price b. If s > b, no trade occurs and

the agent is awarded x. If b ≥ s, then a trade occurs, and instead of x, the

agent receives ϕ(b, y). We analogously define the x′-mechanism. Compensa-

tion differences may be elicited by presenting the subject with a choice: they

are invited to submit a sell price in either the x- or y-mechanism, but not

both. However, in whichever mechanism they do not choose, a sell price of 0

will be submitted on their behalf. After the bids have been submitted, a coin

is flipped to select either x or y, and the associated mechanism’s reward is

allocated to the agent, regardless of which intermediate mechanism they chose

58



to manually submit a sell price for.

We model the agent’s decision problem using the states of the world formal-

ism. We do so to highlight that the incentive-compatibility of our mechanism

does not depend on the manner in which the subject handles probabilities.

Suppose that Ω = R2
+×{x, x′} denotes the payoff-relevant states of the world;

the tuple (bx, bx′ , z) denotes the state in which the computer selects bids bx in

the x-mechanism, bx′ in the x′-mechanism, and the payoff-determining mech-

anism is z ∈ {x, x′}. A choice of action for the agent consists of a tuple in

{x, x′}×R+, corresponding a choice of which intermediate mechanism to par-

ticipate in, and what sell price to submit there. Let X∗ denote the set maps

from Ω → X that are awarded by this mechanism. We assume the agent has

preferences ≿∗ over X∗ and say these are consistent with their preference ≿

over X if, for all f, g ∈ X∗, f(ω) ≿ g(ω) for all ω ∈ Ω implies f ≿∗ g.

Theorem 4. Let {ϕα}α≥0 be a virtual commodity, and suppose an agent (i)

has preferences ≿ on X that satisfy (N.2) and (N.3), and (ii) preferences

≿∗ over X∗ that are consistent with ≿. Then choosing to submit a bid equal

to their true compensation difference, in the mechanism corresponding to the

≿-preferred alternative, is ≿∗-optimal.

Proof. Suppose x ≿ x′, with true compensation difference given by α ≥ 0,

ϕα(x
′) ∼ x. Since ≿ satisfies (N.2) and (N.3), this α exists and is unique.

Suppose first that the subject chooses to participate in the x′-mechanism and

submits a price of s. Then their state-dependent payoff is the act:

fs(bx, bx′ , z) =


ϕbx(x

′) if z = x

ϕbx′
(x) if z = x′, bx′ ≥ s

x′ if z = x′, s > bx′ .

Similarly, if the agent instead submitted s in the x-mechanism, their reward

would be:

gs(bx, bx′ , z) =


ϕbx′

(x) if z = x′

ϕbx(x
′) if z = x, bx ≥ s

x if z = x, s > bx
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Suppose s = α. By (N.2):

ϕbx(x
′) ≿ x ⇐⇒ bx ≥ α,

hence conditional upon z = x, the agent obtains max{ϕbx(x
′), x} from gα.

65

Now, by (N.2), ϕby(x) ≿ x′ no matter the value of bx′ , hence by consistency of

≿∗ the most-preferred f act resulting from a bid in the x′-mechanism is f0.
66

Thus we wish to show gα ≿∗ f0. But conditional upon z = x′, both gα and f0

yield ϕbx′
(x), and conditional upon z = x, gα yields max{ϕbx(x

′), x} whereas

f0 yields ϕbx(x
′). Thus by consistency, gα ≿∗ f0. The final step is to show that

gα ≿∗ gs for all other choices of s. This follows from the standard argument

characterizing weak optimality of truthful bidding in Vickrey auctions, and we

omit it.

The assumption that ≿∗ was a preference relation is not required for the

result. All that was needed was that ≿∗ was consistent with ≿. In principle

≿∗ could be highly incomplete and nontransitive; so long as consistency is

satisfied, Theorem 4 remains valid.

Appendix F Proofs Omitted from the Text

F.1 Omitted Arguments from Section 5.1

F.1.1 Positive Homogeneous & Translation Invariant Rationaliza-

tions

We first argue that any data set arising from (V , E) is rationalizable by a utility

function of the form:

w
(
v(x1), v(x2)

)
,

with w translation-invariant and positive homogeneous. Note that by translation-

invariance, it suffices to define the level set through 0 of w, as every other level

set must then be determined by this via translation along the diagonal. Firstly,

65The max here is understood in the ≿ sense.
66That is, from setting s = 0.
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note that under v the monetary acts (0, 0), (1, 0), and (0, 1) correspond to the

identical utility acts. It will be more convenient to work in utility act space.

Firstly, Y02 yields a utility act v̄2 ∼ (0, 0); if the utility acts (0, 1) ≿ (0, 0)

(i.e. Y02 ≥ 0), then the utility act v̄2 = (−Y02, 1 − Y02) ∼ 0. If Y02 < 0, then

v̄2 = (Y02, 1 + Y02) ∼ 0. Analogously, we can find a utility act v̄1 ∼ (0, 0) by

first finding a translation of (1, 0) that is indifferent with (0, 1) and then sub-

tracting Y02 from both components to obtain indifference with (0, 0).67 Define

the 0-level set of w to be the union of the rays from 0 through v̄1 and v̄2 respec-

tively, and extend to a functional on R2 via translation invariance. To see this

extension is also positive homogeneous, note that the restriction of w to the

half space above (resp. below) the diagonal is linear. Finally, note that any

translation-invariant and positive homogeneous rationalization must share the

same 0-level set as w, and therefore must arise in this fashion. In particular,

this means we do not ‘miss’ any possible rationalizations by considering this

construction.

F.1.2 Relaxing Ambiguity Aversion

As noted above, every translation invariant functional on R2 may be identified

with its level set through 0; if the functional is additionally positive homo-

geneous, 0-level set must be a union of two rays from 0. If the functional is

monotone, these two rays must lie in the second and fourth quadrants respec-

tively; if it is also concave, the upper contour set (i.e. the region bounded

between these rays containing the positive 45-degree ray) must be convex. If

we drop concavity of the functional, but require monotonicity, translation-

invariance and positive homogeneity, then this just requires that v̄1 and v̄2

belong to the fourth and second quadrants of the plane respectively, with no

other constraint. Since these utility acts depend on Y , it is straightforward to

obtain the constraint rhombus in Figure 3. To see this coincides with CEU,

note that for any such pair of rays, there is a vector in ∆(S) normal to each,

67Note that v̄1 must lie below the diagonal of R2 as it a translation of (1, 0) parallel to

the diagonal, and similarly v̄2 must lie above.
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and w may be viewed as integrating against the capacity that takes on one of

these probability measures depending on whether the integrand lies above or

below the diagonal in the space of utility acts.

Appendix G Constraint Set Characterizations

G.1 Quasilinear Increasing Concave Utility

Let KQIC denote the set of vectors in U that are restrictions of quasilinear (in

the first variable), increasing, and concave functions. For a general experiment

(V , E), evaluating (11) with K = KQIC is equivalent to solving:

min
ū∈U

∥∥(grad ū)− Y
∥∥2

2

subject to ūi = ⟨πi, xi⟩+ γi ∀i = 1, . . . , K

⟨πi, xi⟩+ γi ≤ ⟨πj, xi⟩+ γj ∀i, j = 1, . . . , K

πi,1 = 1 ∀i = 1, . . . , K

πi ≥ 0 ∀i = 1, . . . , K

(19)

for ū ∈ U and, for all i = 1, . . . , K, πi ∈ RL, γi ∈ R (where πi,1 denotes the

first component of πi).

Proof. Suppose first that u is a quasilinear (with linear term normalized to

identity), increasing, and concave utility. For all i = 1, . . . , K, define ūi =

u(xi) and let πi denote an arbitrary choice of supergradient of u at each xi.

As u is increasing, it follows πi ≥ 0 for each i. Define γi = ūi − ⟨πi, xi⟩. Then
for all i = 1, . . . , K and all x ∈ X:

u(x) ≤ u(xi) + ⟨πi, x− xi⟩.

Thus, in particular, ⟨πi, xi⟩+ γi ≤ ⟨πj, xi⟩+ γj for all i, j. Finally, as:

u
(
ϕα(xi)

)
≤ u(xi) + ⟨πi, (α, 0)⟩

it follows that:

α ≤ π1
i α
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hence π1 ≥ 1. If xi is on the interior of R2
+ then there is some x̂ such that, for

some α > 0, ϕα(x̂) = xi. Thus u(x̂) = u(xi)− α, and:

u(x̂) ≤ u(xi) + ⟨πi, (−α, 0)⟩,

which yields −α ≤ −απ1
i and hence π1

i ≤ 1. Thus for all x in the inte-

rior of X, their supergradients must have first component equal to 1. By

the outer hemicontinuity of the supergradient correspondence (Hiriart-Urruty

and Lemaréchal (2004), Theorem 6.2.4) this remains true for those x on the

boundary of X, and hence for all xi, πi is of the form (1, π2
i ) as claimed.

Conversely, suppose ū, {πi}Ki=1, {γi}Ki=1 is a solution to (19). Define:

û(x) = min
i∈{1,...,K}

γi + ⟨x, πi⟩.

Then clearly û(xi) = ūi, and û is quasilinear, increasing, and concave.

G.2 Constant Absolute Ambiguity Aversion Preferences

Throughout, we abuse notation by writing v(x) for the vector
(
v(x1), . . . , v(xS)

)
,

and v̄i for the utility act
(
v(xi,1), . . . , v(xi,S)

)
. Finally we will assume that for

all i ̸= j, v̄i − v̄j is not a constant vector and that ϕα(x)s = v−1
(
v(xs + α)

)
.

G.2.1 Subjective Expected Utility

A map u : X → R is said to be a subjective expected utility functional if it is

of the form:

u(x) = ⟨π, v(x)⟩,

for some π ∈ ∆(S). Define KSEU as the collection of ū ∈ U that are restrictions

of subjective expected utility representations. Then solving (11) with K =

KSEU is equivalent to solving:

min
ū∈U

∥∥(grad ū)− Y
∥∥2

2

subject to ūi = ⟨π, v̄i⟩ ∀i = 1, . . . , K

⟨π,1S⟩ = 1

π ≥ 0.

(20)
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Proof. Trivial.

G.2.2 Choquet Expected Utility

Recall that a function ν : 2S → R is a capacity if (i) ν(∅) = 0, ν(S) = 1, and

(ii) for all A ⊆ B, ν(A) ≤ ν(B). By abuse of notation, let S = {1, . . . , S},
and let SS denote the set of permutations on {1, . . . , S}. For each σ ∈ SS,

define:

Cσ = {x ∈ RS : xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(S)}. (21)

The cones {Cσ}σ∈SS
cover RS. Note that if a functional w : RS → R cor-

responds to Choquet integration with respect to ν, then for any σ, U |Cσ is

linear, and indeed if x ∈ Cσ, then:

w(x) =

∫
S

x dP σ,

where, for all i = 1, . . . , S, the probability measure P σ is defined by:

P σ(σ(i)) = ν
(
{σ(1), σ(2), . . . , σ(i)}

)
− ν

(
{σ(1), σ(2), . . . , σ(i− 1)}

)
. (22)

See Ghirardato et al. (2004) for more discussion. Finally, for notational sim-

plicity, define the shorthand Aσ
i for the set {σ(1), σ(2), . . . , σ(i)}.

We say that u : X → R is a Choquet expected utility (CEU) representation

if:

u(x) =

∫
S

v(x) dν,

where ν is a capacity and the integral denotes Choquet integration. Define

KCEU as the collection of u ∈ U that are restrictions of CEU representations.

Then solving (11) with K = KCEU is equivalent to solving:
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min
ū∈U

∥∥(grad ū)− Y
∥∥2

2

subject to ūi = ⟨P σ, v̄i⟩ ∀σ ∈ SS,∀i = 1, . . . , K s.t. ũi ∈ Cσ

P σ
σ(j) = νAσ

j
− νAσ

j−1
∀σ ∈ SS,∀j = 1, . . . , S

νA ≤ νB ∀A,B ∈ 2S s.t. A ⊆ B

ν∅ = 0

νS = 1

(23)

Proof. Suppose u is a CEU representation. Then it corresponds to integra-

tion against some capacity ν which by definition then satisfies the last three

constraints of (23). From the discussion, e.g., in Ghirardato et al. (2004) (see,

in particular, Example 17), each v̄i belongs to at least one Cσ cone, and re-

stricted to each, u simply amounts to integration (i.e. a dot product) of v̄i

with the measure P σ. Hence every CEU functional corresponds to a solution

to (23). Conversely, it follows trivially that every solution to (23) defines a

CEU functional.

G.2.3 Convex Choquet Expected Utility

A capacity ν : 2S → R is said to be a convex, if, for all A,B ⊆ S:

ν(A) + ν(B) ≤ ν(A ∩B) + ν(A ∪B).

A map U : X → R is said to be a convex Choquet expected utility (CCEU)

representation if it is of the form:

u(x) =

∫
S

v(x) dν,

for some convex capacity ν. Define KCCEU as the collection of u ∈ U that are

restrictions of CCEU representations. Then, solving (11) with K = KCCEU is

equivalent to solving:
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min
ū∈U

∥∥(grad ū)− Y
∥∥2

2

subject to ūi = ⟨P σ, v̄i⟩ ∀σ ∈ SS,∀i = 1, . . . , K s.t. ũi ∈ Cσ

P σ
σ(j) = νAσ

j
− νAσ

j−1
∀σ ∈ SS,∀j = 1, . . . , S

νA ≤ νB ∀A,B ∈ 2S s.t. A ⊆ B

νA + νB ≤ νA∪B + νA∩B ∀A,B ∈ 2S

ν∅ = 0

νS = 1

(24)

Proof. Follows from CEU case, where additionally the supermodularity of ν

is enforced.

G.2.4 Maxmin Expected Utility

A map u : X → R is said to be a maxmin expected utility (MEU) representa-

tion if it is of the form:

U(x) = min
π∈P

⟨π, v(x)⟩,

for some compact, convex belief set P ⊆ ∆(S). Define KMEU as the collection

of ū ∈ U that are restrictions of MEU representations. Then solving (11) with

K = KMEU is equivalent to solving:

min
ū∈U

∥∥grad ū− Y
∥∥2

2

subject to ūi = ⟨πi, v̄i⟩ ∀i = 1, . . . , K

⟨πi, v̄i⟩ ≤ ⟨πj, v̄i⟩ ∀i, j = 1, . . . , K

⟨πi,1S⟩ = 1 ∀i = 1, . . . , K

πi ≥ 0 ∀i = 1, . . . , K,

(25)

for π1 . . . , πK ∈ RS.

Proof. Suppose first that ū ∈ K is the restriction to {v̄1, . . . , v̄K} of some MEU

functional w. For i = 1, . . . , K, let πi ∈ ∂w(v̄i) denote an arbitrarily selection
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of supergradients of w. As w(0) = 0, by homogeneity, w(v̄i) = ⟨πi, v̄i⟩ for all
i = 1, . . . , K. Furthermore, for all x ∈ RS and all vi ∈ V :

w(x) ≤ w(v̄i) + ⟨πi, x− v̄i⟩

= ⟨πi, v̄i⟩+ ⟨πi, x− v̄i⟩

= ⟨πi, x⟩,

hence for all v̄j ∈ v(V), ⟨πj, v̄j⟩ ≤ ⟨πi, v̄j⟩. As w is increasing, for each i,

πi ≥ 0. Let α ∈ R. Since w is translation-invariant, for all v̄i:

w(v̄i + α1S) ≤ w(v̄i) + ⟨πi, α1S⟩

hence

w(v̄i) + α ≤ w(v̄i) + ⟨πi, α1S⟩

and

α ≤ α⟨πi,1S⟩. (26)

If α > 0, 1 ≤ ⟨π,1S⟩, and if α < 0, 1 ≥ ⟨π,1S⟩. Since (28) holds for all α ∈ R,
we obtain ⟨πi,1S⟩ = 1.

Suppose now that for some collection π1, . . . , πK ∈ ∆(S), we have a vector

ū ∈ U satisfying (i) ūi = ⟨πi, v̄i⟩ and (ii) ⟨πi, v̄i⟩ ≤ ⟨πj, v̄i⟩. Define

û(x) = min
i∈{1,...,K}

⟨πi, v(x)⟩ = min
π∈co{π1,...,πK}

⟨π, v(x)⟩.

The latter equality follows from standard results on support functions see,

e.g., Hiriart-Urruty and Lemaréchal (2004) Theorem 3.3.2. By construction,

ūi = û(v̄i) and û is a risk-neutral MEU representation.

G.2.5 Variational Preferences

A map u : X → R is said to be a variational preferences representation if it is

of the form:

U(x) = min
π∈∆(S)

⟨π, v(x)⟩+ c(π)

for some cost function c : ∆(S) → [0,∞] that is (i) convex, (ii) lower semicon-

tinuous, and (iii) grounded, i.e. attains 0 for some π ∈ ∆(S). Define KVAR as
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the collection of ū ∈ U that are restrictions of variational utility representa-

tions.

We assume that xK ∈ V is the zero act, and hence v̄K = 0. Then solving

(11) with K = KVAR is equivalent to solving:

min
ū∈U

∥∥grad ū− Y
∥∥2

2

subject to ūi = γi + ⟨πi, v̄i⟩ ∀i = 1, . . . , K

γi + ⟨πi, v̄i⟩ ≤ γj + ⟨πj, v̄i⟩ ∀i, j = 1, . . . , K

⟨πi,1S⟩ = 1 ∀i = 1, . . . , K

πi ≥ 0 ∀i = 1, . . . , K,

γK = 0,

(27)

for π1 . . . , πK ∈ RS and γ1, . . . , γK ∈ R.

Proof. Suppose first that ū ∈ K is the restriction to V of some risk-neutral

variational utility functional w. For i = 1, . . . , K, let πi ∈ ∂w(v̄i) be an

arbitrary selection of supergradients of w, one at each v̄i. For all i = 1, . . . K,

let:

γi = ūi − ⟨πi, v̄i⟩.

Then, for all i, by construction ūi = γi + ⟨πi, v̄i⟩ and γK = 0 hence so too is

ūK . Moreover, for all x ∈ RS and all v̄j:

w(x) ≤ w(v̄j) + ⟨πj, x− v̄j⟩

= γj + ⟨πj, v̄j⟩+ ⟨πj, x− v̄j⟩

= γj + ⟨πj, x⟩,

hence in particular, for all v̄i, γi + ⟨πi, v̄i⟩ ≤ γj + ⟨πj, v̄i⟩. As w is increasing,

for each i, πi ≥ 0. Let α ∈ R. Since w is translation-invariant, for all v̄i:

w(v̄i + α1S) ≤ w(v̄i) + ⟨πi, α1S⟩

hence

w(v̄i) + α ≤ w(v̄i) + ⟨πi, α1S⟩
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and

α ≤ α⟨πi,1S⟩. (28)

If α > 0, 1 ≤ ⟨π,1S⟩, and if α < 0, 1 ≥ ⟨π,1S⟩. Since (28) holds for all α ∈ R,
we obtain ⟨πi,1S⟩ = 1.

Suppose now that for some collection π1, . . . , πK ∈ ∆(S) and γ1, . . . , γK ∈
R with γK = 0, we have a vector ū ∈ U satisfying (i) ūi = γi + ⟨πi, v̄i⟩, and
(ii) γi + ⟨πi, v̄i⟩ ≤ γj + ⟨πj, v̄i⟩. Define

û(x) = min
i∈{1,...,K}

γi + ⟨πi, v(x)⟩

By construction, ūi = û(v̄i) and û is a (i) translation invariant, (ii) concave,

(iii) increasing, and (iv) normalized hence, by the results of Maccheroni et al.

(2006), corresponds to a variational utility representation.

G.2.6 Dual Self Expected Utility

A map u : X → R is said to be a dual-self utility representation if it is of the

form:

u(x) = max
P∈P∗

min
π∈P

⟨π, v(x)⟩,

where P∗ is a Hausdorff-compact collection of compact, convex subsets of ∆(S).

Let (V , E) denote an experiment, where v̄K = 0. Let KDS denote the

collection of ū ∈ U that are restrictions of dual-self utility representations.

Then solving (11) with K = KDS is equivalent to solving:

min
ū∈U

∥∥grad ū− Y
∥∥2

2

subject to ui = ⟨πii, ũi⟩ ∀i = 1, . . . , K

⟨πii, v̄i⟩ ≤ ⟨πij, v̄i⟩ ∀i, j = 1, . . . , K

⟨πji, v̄i⟩ ≤ ⟨πii, v̄i⟩ ∀i, j = 1, . . . , K

⟨πij,1S⟩ = 1 ∀i, j = 1, . . . , K

πij ≥ 0 ∀i, j = 1, . . . , K,

(29)

for ū ∈ U , {πij}Ki,j=1 ∈ RS.
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Proof. Suppose, first, that ū, {πij}Ki,j=1 is a solution to (29). Define, for each

i = 1, . . . , K, the set Pi = co{πi,1, . . . , πi,K}. Clearly Pi ⊆ ∆(S) for each i.

Let P∗ = {Pi}Ki=1. We claim that:

û(x) = max
P∈P∗

min
π∈P

⟨π, x⟩

defines a DSEU functional w whose restriction to v(V) is precisely ū. Firstly,
as ⟨πii, v̄i⟩ ≤ ⟨πij, v̄i⟩ for all j = 1, . . . , K, it follows that:

ūi = ⟨πii, v̄i⟩ = min
π∈Pi

⟨π, v̄i⟩.

But, for all j = 1, . . . , K we have ⟨πji, v̄i⟩ ≤ ūi, hence:

ūi ≥ ⟨πji, v̄i⟩ ≥ min
π∈Pj

⟨π, v̄i⟩,

as πji ∈ Pj. Thus:

w(ũi) ≡ max
P∈P∗

min
π∈P

⟨π, v̄i⟩

= min
π∈Pi

⟨π, v̄i⟩

= ⟨πii, v̄i⟩

= ūi.

Conversely, suppose now that w(x) = maxP∈P∗ minπ∈P ⟨π, x⟩ is a DSEU

functional on RS. For i = 1, . . . , K, let Pi ∈ P∗ denote any belief set for

which:

w(v̄i) = min
π∈Pi

⟨π, v̄i⟩,

and let πii ∈ Pi be any minimizer of the right-hand side.68 Define, for each

i = 1, . . . , K, the utility value ūi = ⟨πii, v̄i⟩. Since Pj is an ‘active’ belief

set at v̄j for each j ̸= i, there exists, for each j, some πij ∈ Pi such that

⟨πij, v̄j⟩ ≤ ūj. Since each πij ∈ Pi, then ūi ≤ ⟨πij, v̄i⟩ for each i. Then, as

clearly every πij ∈ ∆(S), the collection ū, {πij}Ki,j=1 is a solution to (29), as

required.

68Such a belief set exists as P∗ is compact (in the Hausdorff topology on the space of

compact subsets of ∆(S)), and minπ∈P ⟨π, x⟩ is continuous in P for each x.
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G.2.7 Dual-Self Variational Utility

A map w : X → R is said to be a dual-self variational utility functional if it is

of the form:

U(x) = max
c∈C

min
π∈∆(S)

⟨π, x⟩+ c(π),

where C is a collection of convex cost functions c : ∆(S) → [0,∞] such that

max
c∈C

min
π∈∆(S)

c(π) = 0.

Such functionals are characterized by being (i) ϕ-additive, (ii) monotone, (iii)

normalized, i.e. U(1S) = 1, see Supplementary Appendix to Chandrasekher

et al. (2022).

Let (V , E) denote an experiment. Let KDSV denote the collection of ū ∈
U that are restrictions of dual-self variational utility representations. Then

solving (11) with K = KDSV is equivalent to solving:

min
ū∈U

∥∥grad ū− Ȳ
∥∥2

2

subject to ūi ≥ ūj ∀i, j s.t. v̄i ≥ v̄j

uK = 0,

(30)

where v̄i ≥ v̄j is understood in the product order on RS.

Proof. Firstly, suppose w is a dual-self variational functional. Then it clearly

is monotone, hence v̄i ≥ v̄j implies w(v̄i) ≥ w(v̄j). Moreover,

w(1S) = w
(
0 + 1S

)
= w(0) + 1,

hence U is normalized if and only if w(0) = 0. Thus clearly letting ūi = w(v̄i)

satisfies the constraints of (30).

Conversely, suppose ū is a solution to (30). In light of the characteriza-

tion provided in Chandrasekher et al. (2022), it suffices to prove there exists

an translation-invariant and monotone extension from {v̄1, . . . , v̄K} to RS.69

69Normalization holds for any ϕ-additive extension, as v̄K = 0.
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However, note that by hypothesis, no pair v̄i and v̄j lie on the same translate of

the diagonal, thus ū is trivially translation-invariant and by definition mono-

tone on {v̄1, . . . , v̄K}. Hence by Theorem 1 of Cerreia-Vioglio et al. (2014),

there exists a ϕ-additive, monotone, and normalized extension of ū, and hence

by Chandrasekher et al. (2022) this corresponds to some dual-self variational

utility functional.
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